Cooperative Data Exchange with Weighted Cost based on d-Basis Construction

Abhin Shah Su Li Michael Gastpar Ecole Polytechnique Fédérale de Lausanne

Outline

- Cooperative Data Exchange
 - Problem Setup
 - Example and Existing methods
- Main Results
 - A deterministic algorithm to compute the minimum number of required transmissions
 - Optimal coding schemes in which each transmission is a linear combination of fixed number of packets
 - An efficient way to generate coefficient matrix of linear coding scheme starting from Vandermonde matrix

• A fully connected network composed of *N* nodes.

- A fully connected network composed of *N* nodes.
- A K packet making up file.

- A fully connected network composed of *N* nodes.
- A K packet making up file.
- Each node initially has a subset of the *K* packets and knows the packet distributions of other nodes.

- A fully connected network composed of *N* nodes.
- A K packet making up file.
- Each node initially has a subset of the K packets and knows the packet distributions of other nodes.
- Goal: All node recovers all packets (Universal Recovery).

- A fully connected network composed of N nodes.
- A K packet making up file.
- Each node initially has a subset of the *K* packets and knows the packet distributions of other nodes.
- Goal: All node recovers all packets (Universal Recovery).
- Question:
 - What is the minimum number of required transmissions?
 - How to construct the optimal coding scheme?

4 Nodes and 9 Packets

Node 1 $\{p_{1,}p_{2,}p_{3,}p_{4,}p_{5,}p_{6}\}$

Node 4 {p₁,p₃,p₆,p₈} Node 2 $\{p_{1,}p_{2,}p_{3,}p_{7,}p_{8,}p_{9}\}$

Node 3 $\{p_4, p_5, p_6, p_7, p_8, p_9\}$

4 Nodes and 9 Packets

Node 1 $\{p_{1,}p_{2,}p_{3,}p_{4,}p_{5,}p_{6}\}$

Node 4 {p₁,p₃,p₆,p₈} Node 2 $\{p_{1,}p_{2,}p_{3,}p_{7,}p_{8,}p_{9}\}$

Node 3 $\{p_4, p_5, p_6, p_7, p_8, p_9\}$

$$E = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

4 Nodes and 9 Packets

Node 1 {p₁,p₂,p₃,p₄,p₅,p₆}

> Node 4 {p₁,p₃,p₆,p₈}

Node 2 $\{p_{1,}p_{2,}p_{3,}p_{7,}p_{8,}p_{9}\}$

Node 3 $\{p_4, p_5, p_6, p_7, p_8, p_9\}$

$$E = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Minimum number of required transmissions

4 Nodes and 9 Packets

Node 1 $\{p_{1,}p_{2,}p_{3,}p_{4,}p_{5,}p_{6}\}$

Node 4 {p_{1.}p_{3.}p_{6.}p₈} Node 2 $\{p_{1,}p_{2,}p_{3,}p_{7,}p_{8,}p_{9}\}$

Node 3 $\{p_4, p_5, p_6, p_7, p_8, p_9\}$

$$E = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- Minimum number of required transmissions
 - $R^* = 5$

4 Nodes and 9 Packets

Node 1 {p_{1,}p_{2,}p_{3,}p_{4,}p_{5,}p₆}

Node 2 $\{p_{1,}p_{2,}p_{3,}p_{7,}p_{8,}p_{9}\}$

Node 4 {p_{1.}p_{3.}p_{6.}p₈} Node 3 {p₄,p₅,p₆,p₇,p₈,p₉}

$$E = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- Minimum number of required transmissions
 - $R^* = 5$
- Optimal Coding Scheme

4 Nodes and 9 Packets

Node 1 $\{p_1 p_2 p_3 p_4 p_5 p_6\}$

> Node 4 $\{p_1, p_3, p_6, p_8\}$

Node 2 $\{p_1 p_2 p_3 p_7 p_8 p_9\}$

Node 3 $\{p_4 p_5 p_6 p_7 p_8 p_9\}$

$$E = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} T_3 = p_3 + p_7, \\ T_4 = p_4 + p_8, \\ T_5 = p_9 \end{array}$$

- Minimum number of required transmissions
 - $R^* = 5$
- Optimal Coding Scheme

$$T_1=p_1+p_5,$$

$$T_2=p_2+p_6,$$

$$T_3=p_3+p_7,$$

$$T_4=p_4+p_8$$

$$T_5 = p_5$$

4 Nodes and 9 Packets

Node 1 $\{p_1 p_2 p_3 p_4 p_5 p_6\}$

> Node 4 $\{p_1, p_3, p_6, p_8\}$

Node 2 $\{p_1 p_2 p_3 p_7 p_8 p_9\}$

Node 3 $\{p_4 p_5 p_6 p_7 p_8 p_9\}$

$$E = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- Minimum number of required transmissions
 - $R^* = 5$
- Optimal Coding Scheme

$$T_1 = p_1 + p_5,$$

 $T_2 = p_2 + p_6,$

$$T_2=p_2+p_6,$$

$$T_3 = p_3 + p_7$$

$$T_4=p_4+p_8,$$

$$T_5=p_9$$

Unique?

4 Nodes and 9 Packets

$$E = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- Minimum number of required transmissions
 - $R^* = 5$
- Optimal Coding Scheme $T_1 = 5p_1 + 4p_2 + 4p_3 + p_4 + p_5$, $T_2 = 15p_1 + 11p_2 + 14p_3 + 14p_4 + p_6$, $T_3 = 3p_1 + 6p_2 + 13p_3 + 15p_7 + 14p_8$, $T_4 = 9p_1 + 12p_2 + 7p_3 + 15p_7 + 14p_9$, $T_5 = 10p_4 + 14p_5 + 6p_6 + 9p_7 + 8p_8$ (over $GF(2^4)$ with primitive polynomial $\alpha^4 + \alpha + 1$)

Problem Formulation

Integer linear program with Slepian-Wolf Constraints on all proper subsets

The cooperative data exchange problem can be formulated as the following **Integer Linear Program**:

$$\begin{aligned} & \text{minimize} \sum_{i=1}^{N} r_i \\ & \text{subject to} \sum_{i \in \mathbf{S}} r_i \geq \left| \bigcap_{i \in \mathbf{S}^c} X_i^c \right|, \forall \emptyset \subsetneq \mathbf{S} \subsetneq [N] \end{aligned}$$

 X_i : The set of packets that are available at node i.

 r_i : The number of transmissions sent by node i.

Background

d-Basis Construction

[Li et al.'17] proved, for the basic CDE problem:

• The existence of d-Basis is the sufficient and necessary condition for achieving Universal Recovery with K-d transmissions.

Background

d-Basis Construction

[Li et al.'17] proved, for the basic CDE problem:

- The existence of d-Basis is the sufficient and necessary condition for achieving Universal Recovery with K - d transmissions.
- ullet We can always generate an optimal linear coding scheme in which each transmission is a linear combination of d + 1 packets and those packets are indexed by d-Basis vectors.
- The coefficient matrix can be efficiently generated by performing elementary row operations on a Vandermonde matrix.

Definition: d-Basis

A set of K-dimensional binary vectors ($\mathbf{V} = \{v_i : i \in [K - d]\}$) is called a d-Basis if

$$w_H(v_i) = d + 1,$$
 $\forall v_i \in \mathbf{V}$
 $w_H(v_{\mathbf{S}}) \ge |\mathbf{S}| + d,$ $\forall \emptyset \subsetneq \mathbf{S} \subsetneq \mathbf{V}$

 $w_H(v_S)$ is the number of 1's of the bit-wise OR of all vectors in S.

Definition: d-Basis

A set of K-dimensional binary vectors ($\mathbf{V} = \{v_i : i \in [K - d]\}$) is called a d-Basis if

$$w_H(v_i) = d + 1,$$
 $\forall v_i \in \mathbf{V}$
 $w_H(v_S) \ge |\mathbf{S}| + d,$ $\forall \emptyset \subsetneq \mathbf{S} \subsetneq \mathbf{V}$

 $w_H(v_S)$ is the number of 1's of the bit-wise OR of all vectors in S.

$$v_1 = [1 \ 1 \ 1 \ 0 \ 0], \ v_2 = [1 \ 1 \ 0 \ 1 \ 0],$$

Definition: d-Basis

A set of K-dimensional binary vectors ($\mathbf{V} = \{v_i : i \in [K - d]\}$) is called a d-Basis if

$$w_H(v_i) = d + 1,$$
 $\forall v_i \in V$
 $w_H(v_S) \ge |S| + d,$ $\forall \emptyset \subsetneq S \subsetneq V$

 $w_H(v_S)$ is the number of 1's of the bit-wise OR of all vectors in S.

$$v_1 = [1 \ 1 \ 1 \ 0 \ 0], \ v_2 = [1 \ 1 \ 0 \ 1 \ 0],$$

 $\mathbf{S} = \{v_1, v_2\}, \ w_H(v_{\mathbf{S}}) = 4$

Definition: d-Basis

A set of K-dimensional binary vectors ($\mathbf{V} = \{v_i : i \in [K - d]\}$) is called a d-Basis if

$$w_H(v_i) = d + 1,$$
 $\forall v_i \in V$
 $w_H(v_S) \ge |S| + d,$ $\forall \emptyset \subsetneq S \subsetneq V$

 $w_H(v_S)$ is the number of 1's of the bit-wise OR of all vectors in S.

$$v_1 = [1 \ 1 \ 1 \ 0 \ 0], \ v_2 = [1 \ 1 \ 0 \ 1 \ 0],$$
 $\mathbf{S} = \{v_1, v_2\}, \ w_H(v_\mathbf{S}) = 4 \ o \ \text{vectors of 2-Basis}$

Definition: d-Basis

A set of K-dimensional binary vectors ($\mathbf{V} = \{v_i : i \in [K - d]\}$) is called a d-Basis if

$$w_H(v_i) = d + 1,$$
 $\forall v_i \in V$
 $w_H(v_S) \ge |S| + d,$ $\forall \emptyset \subsetneq S \subsetneq V$

 $w_H(v_S)$ is the number of 1's of the bit-wise OR of all vectors in S.

$$v_1 = [1 \ 1 \ 1 \ 0 \ 0], \ v_2 = [1 \ 1 \ 0 \ 1 \ 0], \ v_3 = [1 \ 0 \ 1 \ 1 \ 0]$$

 $\mathbf{S} = \{v_1, v_2\}, \ w_H(v_{\mathbf{S}}) = 4 \rightarrow \text{vectors of 2-Basis}$

Definition: d-Basis

A set of K-dimensional binary vectors ($\mathbf{V} = \{v_i : i \in [K - d]\}$) is called a d-Basis if

$$w_H(v_i) = d + 1,$$
 $\forall v_i \in \mathbf{V}$
 $w_H(v_{\mathbf{S}}) \ge |\mathbf{S}| + d,$ $\forall \emptyset \subsetneq \mathbf{S} \subsetneq \mathbf{V}$

 $w_H(v_S)$ is the number of 1's of the bit-wise OR of all vectors in S.

$$v_1 = [1 \ 1 \ 1 \ 0 \ 0], \ v_2 = [1 \ 1 \ 0 \ 1 \ 0], \ v_3 = [1 \ 0 \ 1 \ 1 \ 0]$$

 $\mathbf{S} = \{v_1, v_2\}, \ w_H(v_{\mathbf{S}}) = 4 \rightarrow \text{vectors of 2-Basis}$
 $\mathbf{F} = \{v_1, v_2, v_3\}, \ w_H(v_{\mathbf{F}}) = 4$

Definition: d-Basis

A set of K-dimensional binary vectors ($\mathbf{V} = \{v_i : i \in [K - d]\}$) is called a d-Basis if

$$egin{aligned} w_H(v_i) &= d+1, & \forall v_i \in \mathbf{V} \ w_H(v_\mathbf{S}) &\geq |\mathbf{S}| + d, & \forall \emptyset \subsetneq \mathbf{S} \subsetneq \mathbf{V} \end{aligned}$$

 $w_H(v_S)$ is the number of 1's of the bit-wise OR of all vectors in S.

$$v_1 = [1 \ 1 \ 1 \ 0 \ 0], \ v_2 = [1 \ 1 \ 0 \ 1 \ 0], \ v_3 = [1 \ 0 \ 1 \ 1 \ 0]$$

 $\mathbf{S} = \{v_1, v_2\}, \ w_H(v_{\mathbf{S}}) = 4 \ o \ \text{vectors of 2-Basis}$
 $\mathbf{F} = \{v_1, v_2, v_3\}, \ w_H(v_{\mathbf{F}}) = 4 \ o \ \text{not vectors of 2-Basis}$

Definition: Vector Production

A binary vector u can generate another binary vector v if u and v have the same dimensions and $supp(v) \subseteq supp(u)$.

Let $\mathcal{G}(u,d)$ denote set of all binary vectors that can be generated by u and have d+1 ones. $\mathcal{G}(\mathbf{S},d)=\cup_{u\in\mathbf{S}}\mathcal{G}(u,d)$.

Definition: Vector Production

A binary vector u can generate another binary vector v if u and v have the same dimensions and $supp(v) \subseteq supp(u)$.

Let $\mathcal{G}(u,d)$ denote set of all binary vectors that can be generated by u and have d+1 ones. $\mathcal{G}(\mathbf{S},d)=\cup_{u\in\mathbf{S}}\mathcal{G}(u,d)$.

Example

 $e_1 = [1\ 1\ 1\ 1\ 1\ 0\ 0\ 0]$ can generate the following two 4-Basis vectors:

$$v_1 = [1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0]$$
 $v_2 = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0]$

Sufficiency of coding scheme based on d-Basis

Theorem 1

If for some subset of nodes $\mathbf{I} \subseteq \mathbf{N}$ there exists a d-Basis $\mathbf{V} \subseteq \mathcal{G}(\{e_i, i \in \mathbf{I}\}, d)$, then the nodes of \mathbf{I} can generate a coding scheme $\mathbf{T} = \{T_1, \dots, T_R\}$ with R = K - d such that $\forall i \in \mathbf{N}, w_H(e_i) \geq d$, node i can recover all packets.

Sufficiency of coding scheme based on d-Basis

Theorem 1

If for some subset of nodes $\mathbf{I} \subseteq \mathbf{N}$ there exists a d-Basis $\mathbf{V} \subseteq \mathcal{G}(\{e_i, i \in \mathbf{I}\}, d)$, then the nodes of \mathbf{I} can generate a coding scheme $\mathbf{T} = \{T_1, \dots, T_R\}$ with R = K - d such that $\forall i \in \mathbf{N}, w_H(e_i) \geq d$, node i can recover all packets.

In G(E,4), we can find a 4-Basis as

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Sufficiency of coding scheme based on d-Basis

Theorem 1

If for some subset of nodes $\mathbf{I} \subseteq \mathbf{N}$ there exists a d-Basis $\mathbf{V} \subseteq \mathcal{G}(\{e_i, i \in \mathbf{I}\}, d)$, then the nodes of \mathbf{I} can generate a coding scheme $\mathbf{T} = \{T_1, \dots, T_R\}$ with R = K - d such that $\forall i \in \mathbf{N}, w_H(e_i) \geq d$, node i can recover all packets.

In $\mathcal{G}(E,4)$, we can find a 4-Basis as

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

There exists a coding scheme with 5 transmissions in which each transmission is a linear combination of 5 packets. Nodes with at least 4 packets can recover all packets.

necessity of coding scheme based on d-Basis

Theorem 2

If universal recovery can be achieved by a linear coding scheme with R (R = K - d) transmissions, then the PDVs of the nodes can generate a d-Basis $\mathbf{V} = \{v_1 \dots, v_R\}$.

necessity of coding scheme based on d-Basis

Theorem 2

If universal recovery can be achieved by a linear coding scheme with R (R = K - d) transmissions, then the PDVs of the nodes can generate a d-Basis $\mathbf{V} = \{v_1 \dots, v_R\}$.

As we know a coding scheme with 5 that can achieve universal recovery, the PDVs of nodes can generate a 4-Basis.

necessity of coding scheme based on d-Basis

Theorem 2

If universal recovery can be achieved by a linear coding scheme with R (R = K - d) transmissions, then the PDVs of the nodes can generate a d-Basis $\mathbf{V} = \{v_1 \dots, v_R\}$.

As we know a coding scheme with 5 that can achieve universal recovery, the PDVs of nodes can generate a 4-Basis.

Corollary

If the PDVs of nodes cannot generate any d-Basis, then there does not exist any linear coding scheme with K-d transmissions that can achieve universal recovery.

Theorem 3

For the CDE in the fully connected network, the minimal number of required transmissions R^* satisfies:

$$R^* = K - \min\{\mathcal{M}, d^*\} \tag{1}$$

where the d^* -Basis is the largest d-Basis that can be generated by the PDVs and $\mathcal{M} = \min_{i \in \mathbb{N}} |X_i|$ is the minimal number of initially available packets at any single node.

Find d^*

Polynomial-time Deterministic Algorithm

Algorithm 1

For a given d, determine whether any d-Basis can be generated or not.

Find d^*

Polynomial-time Deterministic Algorithm

Algorithm 2

Find the maximum value of d such that d-Basis can be generated by binary search method.

Algorithm 1

For a given d, determine whether any d-Basis can be generated or not.

Find d^*

Polynomial-time Deterministic Algorithm

Algorithm 2

Find the maximum value of d such that d-Basis can be generated by binary search method.

Algorithm 1

For a given d, determine whether any d-Basis can be generated or not.

The overall complexity is bounded by $\mathcal{O}(N^3K^3\log(K))$,

Find d^*

Polynomial-time Deterministic Algorithm

Algorithm 2

Find the maximum value of d such that d-Basis can be generated by binary search method.

Algorithm 1

For a given d, determine whether any d-Basis can be generated or not.

The overall complexity is bounded by $\mathcal{O}(N^3K^3\log(K))$,

- Only search for existence of coding schemes based on d-Basis
- d-Basis vectors are mergeable

Based on d-Basis

The d-Basis specifies the packets that should be used to generate each transmission.

$$v_1 = [1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0]$$

Based on d-Basis

The *d*-Basis specifies the packets that should be used to generate each transmission.

$$v_1 = [1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0]$$

But the each real transmission is a linear combinations of such packets with coefficient vector:

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} & 0 & a_{26} & 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 & 0 & 0 & a_{27} & a_{28} & 0 \\ a_{41} & a_{42} & a_{43} & 0 & 0 & 0 & a_{27} & 0 & a_{28} \\ 0 & 0 & 0 & a_{54} & a_{55} & a_{56} & a_{57} & a_{58} & 0 \end{bmatrix}$$

Coefficient matrix is from MDS Codes

Vandermonde matrix V with R rows and K columns

$$\mathcal{V} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ \theta_1 & \theta_2 & \theta_3 & \dots & \theta_{K-1} & \theta_K \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \theta_1^{R-1} & \theta_2^{R-1} & \theta_3^{R-1} & \dots & \theta_{K-1}^{R-1} & \theta_K^{R-1} \end{bmatrix}$$

Coefficient matrix is from MDS Codes

Vandermonde matrix V with R rows and K columns

$$\mathcal{V} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ \theta_1 & \theta_2 & \theta_3 & \dots & \theta_{K-1} & \theta_K \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \theta_1^{R-1} & \theta_2^{R-1} & \theta_3^{R-1} & \dots & \theta_{K-1}^{R-1} & \theta_K^{R-1} \end{bmatrix}$$

over a large enough finite field ($GF(2^4)$ with primitive polynomial $\alpha^4 + \alpha + 1$) and $\theta_i = i$.

Coefficient matrix is from MDS Codes

Vandermonde matrix V with R rows and K columns

$$\mathcal{V} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ \theta_1 & \theta_2 & \theta_3 & \dots & \theta_{K-1} & \theta_K \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \theta_1^{R-1} & \theta_2^{R-1} & \theta_3^{R-1} & \dots & \theta_{K-1}^{R-1} & \theta_K^{R-1} \end{bmatrix}$$

over a large enough finite field ($GF(2^4)$ with primitive polynomial $\alpha^4 + \alpha + 1$) and $\theta_i = i$.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 4 & 5 & 3 & 2 & 7 & 6 & 12 & 13 \\ 1 & 8 & 15 & 12 & 10 & 1 & 1 & 10 & 15 \\ 1 & 3 & 2 & 5 & 4 & 6 & 7 & 15 & 14 \end{bmatrix}$$

Coefficient matrix is from MDS Codes

Vandermonde matrix V with R rows and K columns

$$\mathcal{V} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ \theta_1 & \theta_2 & \theta_3 & \dots & \theta_{K-1} & \theta_K \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \theta_1^{R-1} & \theta_2^{R-1} & \theta_3^{R-1} & \dots & \theta_{K-1}^{R-1} & \theta_K^{R-1} \end{bmatrix}$$

over a large enough finite field ($GF(2^4)$ with primitive polynomial $\alpha^4 + \alpha + 1$) and $\theta_i = i$.

By elementary row operations:

$$A = \begin{bmatrix} 5 & 4 & 4 & 1 & 1 & 0 & 0 & 0 & 0 \\ 15 & 11 & 14 & 14 & 0 & 1 & 0 & 0 & 0 \\ 3 & 6 & 13 & 0 & 0 & 0 & 15 & 14 & 0 \\ 9 & 12 & 7 & 0 & 0 & 0 & 15 & 0 & 14 \\ 0 & 0 & 0 & 10 & 14 & 6 & 9 & 8 & 0 \end{bmatrix}$$

Summary

Contributions

• We present a new deterministic algorithm to compute the minimum number of required transmissions. The complexity of our algorithm is bounded by $\mathcal{O}(N^3K^3\log(K))$.

Summary

Contributions

- We present a new deterministic algorithm to compute the minimum number of required transmissions. The complexity of our algorithm is bounded by $\mathcal{O}(N^3K^3\log(K))$.
- We propose a novel coding scheme with K-d transmissions in which each transmission is a linear combination of d+1 packets.

Summary Contributions

- We present a new deterministic algorithm to compute the minimum number of required transmissions. The complexity of our algorithm is bounded by $\mathcal{O}(N^3K^3\log(K))$.
- We propose a novel coding scheme with K-d transmissions in which each transmission is a linear combination of d+1 packets.
- The coefficient matrix of our coding scheme can be efficiently generated by performing elementary row operations on a Vandermonde matrix.

Thank you!