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Problem Setup

• A fully connected network composed of N nodes.

• A K packet making up file.

• Each node initially has a subset of the K packets and knows
the packet distributions of other nodes.

• Goal: All node recovers all packets (Universal Recovery).
• Question:

• What is the minimum number of required transmissions?
• How to construct the optimal coding scheme?
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Example
4 Nodes and 9 Packets

Node 1
{p1,p2,p3,p4,p5,p6}

Node 4
{p1,p3,p6,p8}

Node 2
{p1,p2,p3,p7,p8,p9}

Node 3
{p4,p5,p6,p7,p8,p9}

E =


1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1
1 0 1 0 0 1 0 1 0



• Minimum number of required
transmissions
• R∗ = 5

• Optimal Coding Scheme
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• Minimum number of required
transmissions
• R∗ = 5

• Optimal Coding Scheme
T1 = p1 + p5,
T2 = p2 + p6,
T3 = p3 + p7,
T4 = p4 + p8,
T5 = p9
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Example
4 Nodes and 9 Packets

Node 1
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0 0 0 1 1 1 1 1 1
1 0 1 0 0 1 0 1 0



• Minimum number of required
transmissions
• R∗ = 5

• Optimal Coding Scheme
T1 = 5p1 + 4p2 + 4p3 + p4 + p5,
T2 = 15p1+11p2+14p3+14p4+p6,
T3 = 3p1+6p2+13p3+15p7+14p8,
T4 = 9p1+12p2+7p3+15p7+14p9,
T5 = 10p4 + 14p5 + 6p6 + 9p7 + 8p8
(over GF (24) with primitive
polynomial α4 + α + 1)
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Problem Formulation
Integer linear program with Slepian-Wolf Constraints on all proper subsets

The cooperative data exchange problem can be formulated as the
following Integer Linear Program:

minimize
N∑
i=1

ri

subject to
∑
i∈S

ri ≥

∣∣∣∣∣ ⋂
i∈Sc

X c
i

∣∣∣∣∣ , ∀∅ ( S ( [N]

Xi : The set of packets that are available at node i .
ri : The number of transmissions sent by node i .
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Background
d-Basis Construction

[Li et al.’17] proved, for the basic CDE problem:

• The existence of d-Basis is the sufficient and necessary
condition for achieving Universal Recovery with K − d
transmissions.

• We can always generate an optimal linear coding scheme in
which each transmission is a linear combination of d + 1
packets and those packets are indexed by d-Basis vectors.

• The coefficient matrix can be efficiently generated by
performing elementary row operations on a Vandermonde
matrix.
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Definitions

Definition:d-Basis

A set of K -dimensional binary vectors (V = {vi : i ∈ [K − d ]}) is
called a d-Basis if

wH(vi ) = d + 1, ∀vi ∈ V

wH(vS) ≥ |S|+ d , ∀∅ ( S ( V

wH(vS) is the number of 1’s of the bit-wise OR of all vectors in S.

Example

v1 = [1 1 1 0 0], v2 = [1 1 0 1 0], v3 = [1 0 1 1 0]
S = {v1, v2}, wH(vS) = 4 → vectors of 2-Basis
F = {v1, v2, v3}, wH(vF) = 4 → not vectors of 2-Basis
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Definitions

Definition: Vector Production

A binary vector u can generate another binary vector v if u and v
have the same dimensions and supp(v) ⊆ supp(u).
Let G(u, d) denote set of all binary vectors that can be generated
by u and have d + 1 ones. G(S, d) = ∪u∈SG(u, d).

Example

e1 = [1 1 1 1 1 1 0 0 0] can generate the following two 4-Basis
vectors:

v1 = [1 1 1 1 1 0 0 0 0] v2 = [1 1 1 1 0 1 0 0 0]
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Minimum Number of Required Transmissions
Sufficiency of coding scheme based on d-Basis

Theorem 1

If for some subset of nodes I ⊆ N there exists a d-Basis
V ⊆ G({ei , i ∈ I}, d), then the nodes of I can generate a coding
scheme T = {T1, . . . ,TR} with R = K − d such that
∀i ∈ N,wH(ei ) ≥ d , node i can recover all packets.

In G(E , 4), we can find a 4-Basis as
v1
v2
v3
v4
v5

 =


1 1 1 1 1 0 0 0 0
1 1 1 1 0 1 0 0 0
1 1 1 0 0 0 1 1 0
1 1 1 1 1 0 1 0 1
0 0 0 1 1 1 1 1 0


There exists a coding scheme with 5 transmissions in which each

transmission is a linear combination of 5 packets. Nodes with at
least 4 packets can recover all packets.
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Minimum Number of Required Transmissions
necessity of coding scheme based on d-Basis

Theorem 2

If universal recovery can be achieved by a linear coding scheme
with R (R = K − d) transmissions, then the PDVs of the nodes
can generate a d-Basis V = {v1 . . . , vR}.

As we know a coding scheme with 5 that can achieve universal
recovery, the PDVs of nodes can generate a 4-Basis.

Corollary

If the PDVs of nodes cannot generate any d-Basis, then there does
not exist any linear coding scheme with K − d transmissions that
can achieve universal recovery.
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Minimum Number of Required Transmissions

Theorem 3

For the CDE in the fully connected network, the minimal number
of required transmissions R∗ satisfies:

R∗ = K −min{M, d∗} (1)

where the d∗-Basis is the largest d-Basis that can be generated by
the PDVs and M = mini∈N |Xi | is the minimal number of initially
available packets at any single node.

11 / 16



Find d∗

Polynomial-time Deterministic Algorithm

Algorithm 1

For a given d , determine whether any d-Basis can be generated or
not.

Algorithm 2

Find the maximum value of d such that d-Basis can be generated
by binary search method.

Algorithm 1

For a given d , determine whether any d-Basis can be
generated or not.

The overall complexity is bounded by O(N3K 3 log(K )),
• Only search for existence of coding schemes based on d-Basis
• d-Basis vectors are mergeable
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Optimal Linear Coding Scheme
Based on d-Basis

The d-Basis specifies the packets that should be used to generate
each transmission.

v1 = [1 1 1 1 1 0 0 0 0]

But the each real transmission is a linear combinations of such
packets with coefficient vector:

α1

α2

α3

α4

α5

 =


a11 a12 a13 a14 a15 0 0 0 0
a21 a22 a23 a24 0 a26 0 0 0
a31 a32 a33 0 0 0 a27 a28 0
a41 a42 a43 0 0 0 a27 0 a28
0 0 0 a54 a55 a56 a57 a58 0



13 / 16
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Optimal Linear Coding Scheme
Coefficient matrix is from MDS Codes

Vandermonde matrix V with R rows and K columns

V =


1 1 1 . . . 1 1
θ1 θ2 θ3 . . . θK−1 θK
...

...
...

. . .
...

...

θR−11 θR−12 θR−13 . . . θR−1K−1 θR−1K



over a large enough finite field (GF (24)with primitive polynomial
α4 + α + 1) and θi = i .
By elementary row operations:

A =


5 4 4 1 1 0 0 0 0

15 11 14 14 0 1 0 0 0
3 6 13 0 0 0 15 14 0
9 12 7 0 0 0 15 0 14
0 0 0 10 14 6 9 8 0


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9 12 7 0 0 0 15 0 14
0 0 0 10 14 6 9 8 0


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Optimal Linear Coding Scheme
Coefficient matrix is from MDS Codes

Vandermonde matrix V with R rows and K columns

V =


1 1 1 . . . 1 1
θ1 θ2 θ3 . . . θK−1 θK
...

...
...

. . .
...

...

θR−11 θR−12 θR−13 . . . θR−1K−1 θR−1K


over a large enough finite field (GF (24)with primitive polynomial

α4 + α + 1) and θi = i .
By elementary row operations:

A =


5 4 4 1 1 0 0 0 0

15 11 14 14 0 1 0 0 0
3 6 13 0 0 0 15 14 0
9 12 7 0 0 0 15 0 14
0 0 0 10 14 6 9 8 0


14 / 16



Summary
Contributions

• We present a new deterministic algorithm to compute the
minimum number of required transmissions. The complexity
of our algorithm is bounded by O(N3K 3 log(K )).

• We propose a novel coding scheme with K − d transmissions
in which each transmission is a linear combination of d + 1
packets.

• The coefficient matrix of our coding scheme can be efficiently
generated by performing elementary row operations on a
Vandermonde matrix.
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Thank you!
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