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Outline

® Cooperative Data Exchange

® Problem Setup
® Example and Existing methods
® Main Results

® A deterministic algorithm to compute the minimum number of
required transmissions

® Optimal coding schemes in which each transmission is a linear
combination of fixed number of packets

® An efficient way to generate coefficient matrix of linear coding
scheme starting from Vandermonde matrix
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B —
Problem Setup

A fully connected network composed of N nodes.

A K packet making up file.

® Each node initially has a subset of the K packets and knows
the packet distributions of other nodes.

® Goal: All node recovers all packets (Universal Recovery).

Question:

® What is the minimum number of required transmissions?
® How to construct the optimal coding scheme?
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Example
4 Nodes and 9 Packets

Node 1 Node 2
{P1 P, P3P, Ps P} {Py P, P3P, Pg P}
Node 4 Node 3
{P,P3Ps Pt {P, Ps P P7Pg P}
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Example
4 Nodes and 9 Packets

Node 1 Node 2 - .
‘ ’ ‘ ’ ® Minimum number of required

transmissions

‘ Node 4 ’ ‘ Node 3 ’ ® R*=5
{P, P3P Pg} {P, P5 Ps P7 Py Po}
- ® Optimal Coding Scheme
T1 = p1 + ps,
T2 = p2+ ps,
111111000 T3 = p3 +pr,
f_[t1 1000111 Ta = pa+ ps,
000111111 Ts = po
101001010
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Example
4 Nodes and 9 Packets

‘ Node 1 ’ ‘ Node 2 ’ e Minimum number of required
{P; P, P3P, Ps PG} {P; P, P; P; Py Po} transmissions
® R*=5H
Node 4 Node 3
‘ (P13 P Ps} ’ ‘ {P4P5PoPr P PS} ’ ® Optimal Coding Scheme
Ti=p1+ps,
T2 = p2 + pe,
111111000 %:ZZJJ:Z;
E_ 111000111 Ts = po
000111111 Unique?
101001010
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Example
4 Nodes and 9 Packets

® Minimum number of required
Node 1 Node 2 ..
‘ {P1 P, P3Py Ps Pet ’ ‘ {PPo P3P P P} ’ transmissions
* R =5
‘ Node 4 ’ ‘ Node 3 ’ ® Optimal Coding Scheme
{P, P3P Pg} {P, P5 Ps P7 Py Po}
T1 = 5p1 + 4p2 + 4p3 + pa + ps,
T2 = 15p1+11pa+14p3+14ps+pe,
T3 = 3p1+6px+13p3+15p7+14pg,
111111000 T4 =9p1+12p2+7p3+15p7+14p9,
f_|t11000111 Ts = 10p4 + 14ps +6ps +9p7 +8ps
“looo0111111 (over GF(2*) with primitive
101001010 polynomial a* + o + 1)
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Problem Formulation

Integer linear program with Slepian-Wolf Constraints on all proper subsets

The cooperative data exchange problem can be formulated as the
following Integer Linear Program:

N
minimize E ri
i=1

subject to Z >
i€S

V0SS C[N]

N

ieSe

X;i : The set of packets that are available at node i.
ri : The number of transmissions sent by node i.
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T —
Background

d-Basis Construction

[Li et al."17] proved, for the basic CDE problem:

® The existence of d-Basis is the sufficient and necessary
condition for achieving Universal Recovery with K — d
transmissions.
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T —
Background

d-Basis Construction

[Li et al."17] proved, for the basic CDE problem:

® The existence of d-Basis is the sufficient and necessary
condition for achieving Universal Recovery with K — d
transmissions.

® We can always generate an optimal linear coding scheme in
which each transmission is a linear combination of d + 1
packets and those packets are indexed by d-Basis vectors.

® The coefficient matrix can be efficiently generated by

performing elementary row operations on a Vandermonde
matrix.
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Definitions

Definition:d-Basis

A set of K-dimensional binary vectors (V ={v;:i € [K —d]}) is
called a d-Basis if

WH(V,') =d+1, Vv e V
wr(vs) > [S| +d, Wescv

wi(vs) is the number of 1's of the bit-wise OR of all vectors in S.
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Definitions

Definition:d-Basis

A set of K-dimensional binary vectors (V ={v;:i € [K —d]}) is
called a d-Basis if

WH(V,') =d+1, Vv e V
wr(vs) > [S| +d, Wescv

wi(vs) is the number of 1's of the bit-wise OR of all vectors in S.

Example

=[11100, »,=[11010], vs=[10110]
S = {v1,w}, wy(vs) =4 — vectors of 2-Basis
F = {vi,w,v3}, wy(vg) =4 — not vectors of 2-Basis
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Definitions

Definition: Vector Production

A binary vector u can generate another binary vector v if v and v
have the same dimensions and supp(v) C supp(u).
Let G(u, d) denote set of all binary vectors that can be generated
by u and have d + 1 ones. G(S,d) = UuesG(u, d).
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Definitions

Definition: Vector Production

A binary vector u can generate another binary vector v if v and v
have the same dimensions and supp(v) C supp(u).
Let G(u, d) denote set of all binary vectors that can be generated
by u and have d + 1 ones. G(S,d) = UuesG(u, d).

Example

eg=[11111100 0] can generate the following two 4-Basis
vectors:

vi=[111110000] v»=[111101000]
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Minimum Number of Required Transmissions

Sufficiency of coding scheme based on d-Basis

Theorem 1

If for some subset of nodes | C N there exists a d-Basis

V C G({ej,i € I},d), then the nodes of | can generate a coding
scheme T = {Ty,..., Tr} with R = K — d such that

Vi € N, wy(ej) > d, node i can recover all packets.
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Minimum Number of Required Transmissions

Sufficiency of coding scheme based on d-Basis

Theorem 1

If for some subset of nodes | C N there exists a d-Basis

V C G({ej,i € I},d), then the nodes of | can generate a coding
scheme T = {Ty,..., Tr} with R = K — d such that

Vi € N, wy(e;) > d, node i can recover all packets.

In G(E,4), we can find a 4-Basis as

Vi 11111000060
1%} 111101000
wsw|l=|(111000110
V4 111110101
Vs 000111110

There exists a coding scheme with 5 transmissions in which each
transmission is a linear combination of 5 packets. Nodes with at

least 4 packets can recover all packets.
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Minimum Number of Required Transmissions

necessity of coding scheme based on d-Basis

Theorem 2

If universal recovery can be achieved by a linear coding scheme
with R (R = K — d) transmissions, then the PDVs of the nodes
can generate a d-Basis V = {v; ..., vg}.
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Minimum Number of Required Transmissions

necessity of coding scheme based on d-Basis

Theorem 2

If universal recovery can be achieved by a linear coding scheme
with R (R = K — d) transmissions, then the PDVs of the nodes
can generate a d-Basis V = {v; ..., vg}.

As we know a coding scheme with 5 that can achieve universal
recovery, the PDVs of nodes can generate a 4-Basis.

Corollary

If the PDVs of nodes cannot generate any d-Basis, then there does
not exist any linear coding scheme with K — d transmissions that
can achieve universal recovery.
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Minimum Number of Required Transmissions

Theorem 3

For the CDE in the fully connected network, the minimal number
of required transmissions R* satisfies:

R* = K — min{M, d*} (1)

where the d*-Basis is the largest d-Basis that can be generated by
the PDVs and M = minjcy |Xj| is the minimal number of initially
available packets at any single node.
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Find d*

Polynomial-time Deterministic Algorithm

Algorithm 1

For a given d, determine whether any d-Basis can be generated or
not.
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T
Find d*

Polynomial-time Deterministic Algorithm

Algorithm 2

Find the maximum value of d such that d-Basis can be generated
by binary search method.

Algorithm 1

For a given d, determine whether any d-Basis can be
generated or not.

The overall complexity is bounded by O(N3K3log(K)),
® Only search for existence of coding schemes based on d-Basis

® d-Basis vectors are mergeable
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Based on d-Basis

The d-Basis specifies the packets that should be used to generate
each transmission.

vi=[111110000]
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Optimal Linear Coding Scheme

Based on d-Basis

The d-Basis specifies the packets that should be used to generate
each transmission.

vi=[111110000]

But the each real transmission is a linear combinations of such
packets with coefficient vector:

o aj] ap a3 as ais 0 0 0 O
%3 a1 ax» a3 ax 0 a 0 0 O
az| = |as1 a2 a3 0 0 0 a7 ag O
(%} agr axx a3 0 0 0 a7 0 ap
Qs 0 0O 0 as4 ass5 ase asy asg O
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Vandermonde matrix V with R rows and K columns

1 1 1 .1 1
61 0 03 ... Ok1 Ok
V= . . . . .
or—t oft oft . gR71 R
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Optimal Linear Coding Scheme

Coefficient matrix is from MDS Codes
Vandermonde matrix V with R rows and K columns

11 1 ... 1 1
6 6 63 ... Ok1 Bk
V= : : . ' . :
oFt o5t of Tt L egTT o

over a large enough finite field (GF(2*)with primitive polynomial
a*+a+1)and §; =i

111 1 1 11 1 1
12 3 4 5 6 7 8 9
A=11 4 5 3 2 7 6 12 13
1 8 15 12 10 1 1 10 15
1 3 2 5 4 6 7 15 14
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Optimal Linear Coding Scheme
Coefficient matrix is from MDS Codes
Vandermonde matrix V with R rows and K columns

1 1 1 .1 1
61 6> O3 ... Ok1 Ok
V= . . . . . .
or—t oft oft . gR71 R

over a large enough finite field (GF(2*)with primitive polynomial
a*+a+1)and ;=i
By elementary row operations:

5 4 4 1 1 0 0 0 O
15 11 14 14 0 1 0 O O
A=|(3 6 13 0 0 0 15 14 0
9 12 7 0 0 0 15 0 14
0 0 0 10 146 9 8 O
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Summary

Contributions

® We present a new deterministic algorithm to compute the
minimum number of required transmissions. The complexity
of our algorithm is bounded by O(N3K3log(K)).
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Summary

Contributions

® We present a new deterministic algorithm to compute the
minimum number of required transmissions. The complexity
of our algorithm is bounded by O(N3K3log(K)).

® We propose a novel coding scheme with K — d transmissions
in which each transmission is a linear combination of d 4+ 1
packets.

® The coefficient matrix of our coding scheme can be efficiently
generated by performing elementary row operations on a
Vandermonde matrix.
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Thank you!
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