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• Diagrammatic representations of probability distri-
butions with a Markovian structure.

Local Markov Property

• Given value of neighbors, a node is independent
of the remaining nodes e.g., Body Temperature ⊥⊥
Runny Nose | Flu.

Pairwise Markov Random Fields

• Consider an undirected graph G = ([p], E) where
the nodes correspond to a p−dimensional random vec-
tor x, and E denotes the edge set.

• Any strictly positive distribution in the family of
pairwise MRF represented by G factorizes as :

fx(x) ∝ exp
(∑

i∈[p]

gi(xi) +
∑

(i,j)∈E

gij(xi, xj)
)
.

Examples gi(xi) gij(xi, xj)

Ising θ(i)xi θ(ij)xixj
Discrete θ(i)(xi) θ(i)(xi)

Gaussian θ
(i)
1 xi + θ

(i)
2 x2i θ(ij)xixj

• Limited progress for continuous (non-Gaussian)
MRFs.

Learning Markov Random Fields

• Structure Recovery : Given independent samples of
x, estimate the underlying graph structure.

• Parameter Recovery : Given independent samples
of x, estimate all the associated parameters.

Markov Random Fields
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• GISO is a node specific convex objective function.

• GISO can recover the graph structure and the ‘edge’
parameters (but not the ‘node’ parameters) in discrete
graphical models with Ω(log p) samples.

• GISO is ingenious but unusual as it does not con-
tain any partition function.

• If fxi(xi|x−i = x−i;θ) ∝ exp
(
g(θ,x)

)
, then popu-

lation GISO for node i is E
[

exp
(
− g(θ,x)

)]
.

Generalized Interaction Screening Objective

Continuous random variables

• Bounded Domain: Random variables are bounded.

• Parametric potentials : gi(·) = θ(i)
T

φ(·), and

gij(·, ·) = θ(ij)
T

ψ(·, ·).

Examples : 1. Polynomial basis 2. Harmonic basis

• Bounded parameters : Parameters are bounded.

• Sparsity : Maximum degree of any node of the un-
derlying graph is at-most d.

Problem Formulation

Step 1 - Learn graph structure and edge parameters

• For any i ∈ [p] the conditional density of xi is :

fxi(xi|x−i = x−i;ϑ
(i)) ∝ exp

(
ϑ(i)Tϕ(i)(x)

)
.

where ϑ(i) consists of node parameters and edge pa-
rameters involving node i and ϕ(i)(·) is a function of
the node and edge basis.

Population GISO = E
[

exp
(
− ϑTϕ(i)(x)

)]
.

• GISO be adapted to recover the graph structure and
the ‘edge’ parameters in continuous graphical models!

Algorithm

Step 2 - Learn node parameters

• For any i ∈ [p] the conditional density of xi is:

fxi(xi|x−i = x−i;ϑ
(i)) ∝ exp

(
λT (x−i)φ(xi)

)
where

λ(x−i), the canonical parameter, is linear function of
node and edge parameters.

• By duality of exponential family, if we know
µ(x−i) := E[φ(xi)|X−i = x−i], we can learn λ(x−i).

• Learning µ(x−i) is a regression problem.

• The regression function µ(·) is Lipschitz −→ appro-
ximately linearize µ(·) −→ a sparse linear regression
problem.

Algorithm

For discrete or continuous random variables

1 - Population GISO is equivalent to “local” MLE

• arg min Population GISO = arg minD(· ‖ ·)
where D(· ‖ ·) is a node-specific KL divergence.

2 - GISO is asymptotically consistent and normal

• The traditional MLE is intractable.

• ‘Local’ M-estimation is tractable (but not asympto-
tically efficient).

For continuous random variables

3 - Structure recovery with Ω
(

exp(d) log p
)

samples

4 - Parameter recovery with Ω
(

exp(d) log p
)

samples

• All of the existing methods require some stringent
conditions, for example - incoherence, dependency,
sparse eigenvalue or restricted strong convexity.

• Our work does not require any of these conditions.

Main Results
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