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Markov Random Fields

e Diagrammatic representations of probability distri-
butions with a Markovian structure.

Body
Temperature

‘ Local Markov Property ‘

e Given value of neighbors, a node is independent
of the remaining nodes e.g., Body Temperature 1L
Runny Nose | Flu.

‘ Pairwise Markov Random Fields‘

e Consider an undirected graph G = ([p], E) where
the nodes correspond to a p—dimensional random vec-
tor x, and F denotes the edge set.

e Any strictly positive distribution in the family of
pairwise MRF represented by G factorizes as :
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e Limited progress for continuous (non-Gaussian)
MRFs.

Learning Markov Random Fields ‘

e Structure Recovery : Given independent samples of
x, estimate the underlying graph structure.

e Parameter Recovery : Given independent samples
of x, estimate all the associated parameters.
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~— Generalized Interaction Screening Objective —
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e GISO is a node specific convex objective function.

e GISO can recover the graph structure and the ‘edge’
parameters (but not the ‘node’ parameters) in discrete
graphical models with Q(logp) samples.

e GISO is ingenious but unusual as it does not con-
tain any partition function.

o If fy (wi|x_; = x_;;0) o exp (g(,x)), then popu-
lation GISO for node 3 is E[exp (- g(&x))}.

~—————— Problem Formulation —————

Continuous random variables

e Bounded Domain: Random variables are bounded.

e Parametric potentials : g¢;(-) = 0(1‘)T¢(.)’ and
i)™
gij('v') =0 P(-s0).

Examples : 1. Polynomial basis 2. Harmonic basis

e Bounded parameters : Parameters are bounded.

e Sparsity : Maximum degree of any node of the un-
derlying graph is at-most d.

Algorithm

Step 2 - ‘ Learn node parameters ‘

e For any i € [p] the conditional density of x; is:
fao (@ilxi = I—i;ﬁ(i)) x exp (AT(I—i)(b(xi)) where
A(z_;), the canonical parameter, is linear function of
node and edge parameters.

e By duality of exponential family, if we know
p(x_;) =Elp(x)|X_; = z_;], we can learn A(z_;).
e Learning p(z_;) is a regression problem.

e The regression function p(-) is Lipschitz — appro-
ximately linearize pu(-) — a sparse linear regression
problem.

Algorithm

Step 1-

Learn graph structure and edge parameters ‘

e For any i € [p] the conditional density of x; is :
I (mi]xmi = w_y; ﬂ(i)) X exp (ﬂ(i)Tgo(i) (x))
where 9 consists of node parameters and edge pa-

rameters involving node i and ¢ (-) is a function of
the node and edge basis.

‘ Population GISO ‘ =E {exp ( — 9T (x))} .

e GISO be adapted to recover the graph structure and
the ‘edge’ parameters in continuous graphical models!

Main Results

‘ For discrete or continuous random variables ‘

1-

Population GISO is equivalent to “local” MLE

e arg min‘ Population GISO |= argmin D(- || -)

where D(- || -) is a node-specific KL divergence.

2 -

GISO is asymptotically consistent and normal

e The traditional MLE is intractable.

e ‘Local’ M-estimation is tractable (but not asympto-
tically efficient).

‘ For continuous random variables ‘

3 - | Structure recovery with Q(()Xp(d) log p) samples

4 -| Parameter recovery with Q( exp(d)logp) samples

e All of the existing methods require some stringent
conditions, for example - incoherence, dependency,
sparse eigenvalue or restricted strong convezity.

e Our work does not require any of these conditions.




