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Markov Random Fields

Undirected Graphical Models

* Diagrammatic representations of
probability distributions with a
Markovian structure

Local Markov Property o @
* Given the value of neighbors, a node is /

independent of the remaining nodes
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Pairwise Markov Random Fields

» Consider an undirected graph G = (|p], E).

* Any strictly positive distribution in the family of pairwise MRF represented by
G factorizes as

fx(x) o< exp ( > gilzi) + Z 9i5 (2, %‘))
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Node Potentials Edge Potentials



Pairwise Markov Random Fields
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Learning Markov Random Fields

 Structure recovery - Given independent samples of X, estimate the underlying graph
structure (i.e., the edge set E).

* Parameter recovery - Given independent samples of X, estimate all the parameters
associated with the joint density.



Comparison with prior works

Binary and Discrete

Work Variable Consistency Normality #computations #samples

(pairwise) (1.e. SLLN) (1.e. CLT)

Bresler, Mossel, Sly (2013) Discrete v X @(pd+2) O(exp(d) logp)
Bresler (2015) Binary v X (7)(192) O(exp(exp(d)) logp)
Klivans, Meka (2017) Discrete v X @(p2) O(exp(d)logp)
Vuffray, Misra, Lokhov (2020)  Discrete v X @(pZ) O(exp(d) logp)

This work Continuous Vv v @(pz) O(exp(d) log p)
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Generalized Interaction Screening Objective (GISO)
Vuffray, Misra, Lokhov— NeurIPS 2020

* GISOis a node specific convex objective function.

* The GISO can recover the graph structure and the ‘edge’ parameters in discrete
graphical models.

» Suppose fx,(xi|x—; = £_;;0) x exp (g(H,x)).

* Then, population GISO fornode 7 is: K| exp ( —g(0, x)) .



Continuous Markov Random Fields

Beyond the Gaussian case

* Most of the existing methods work with the following extension of the Ising model -
fx(X) o exp ( Z 0 z; + Z O(ij)a:i:cj).
i€[p] (i,)EE
Our method is applicable to a large class of distributions beyond this.

* All of the existing methods require some stringent conditions, for example -
incoherence, dependency, sparse eigenvalue or restricted strong convexity

Our work does not require any of these conditions.



Problem Formulation

Continuous Random Variables

* Bounded domain
* Parametric potentials: gi(-) = H(i)TCb(') and gij(,-) = H(ij)T"P(w )
Examples - Polynomial basis, Harmonic basis

* Bounded parameters

o Sparsity: Maximum degree of the underlying graph is at-most d.



Algorithm

Overview

First, we recover the graph structure and the associated edge parameters —
1.1. Extend the GISO to the continuous setting

Second, we recover the node structure —

2.1. Transform the problem of learning node parameters to a sparse linear
regression

2.2. Use a robust variation of lasso, and knowledge of the learned edge parameters



Algorithm

Learning edge parameters

» Forany i € [p], the conditional density of X; is of the form -
fxi (@i|x—i = 33 19(2.)) X €xXp (ﬂ(i)TSO(i) (X))
where 9 consists of node parameters and edge parameters involving node 7 and ¢'” ()

is a function of the node and edge basis.

* Population GISO fornode ¢ is: E| exp ( — 19Tgo(i)(x)) .

* The finite sample GISO can recover the ‘edge’ parameters in continuous graphical
models as well!



Algorithm

Learning node parameters

For any 7 € [p], the conditional density of Xx; is as follows -

fro(@ilx-i = 2-;9"0) o exp (N7 (2-:) (i)

where A*(z_;) , the canonical parameter, is linear function of node and edge parameters.

Let p*(z—i) = El@(x)| X i = 2.

By duality of exponential family, if we know p*(x_;), we can recover A*(z_;).

Learning p*(x_;), can be viewed as a traditional regression problem.

p*(-) is Lipschitz = approximately linearize it = sparse linear regression.



Main results
GISO - KL Divergence

* The population GISO is equivalent to a “local” MLE!

* Theorem 1. Consider ¢ € [p|. Then, with D(- || -) representing a node-specific KL-

divergence, arg min Population GISO = arg min D(- || -)



Main results

Consistency and Normality

* Theorem 2. Consider ¢ € [p|. Then,
A. The finite sample estimate of GISO is asymptotically consistent!

B. Under some mild conditions, the finite sample estimate of GISO is
asymptotically normal! l

* Even though the traditional MLE is intractable, this ‘local’ M-estimation is tractable.

* However, unlike traditional MLE, this is not asymptotically efficient.



Main results

Finite Sample Guarantees

* Theorem 3. Structure recovery can be achieved with €2 (exp(a’)lc)g(p)) samples

* Theorem 4. Parameter recovery can be achieved with £2 (exp(d)log(p)) samples



‘Thank you!



