On Learning Continuous Pairwise Markov Random Fields

Abhin Shah, Devavrat Shah, Gregory W. Wornell

Massachusetts Institute of Technology

 Diagrammatic representations of probability distributions with a Markovian structure

Local Markov Property

- Given the value of neighbors, a node is independent of the remaining nodes
- Body Temperature LL Runny Nose | Flu

Pairwise Markov Random Fields

- Consider an undirected graph G = ([p], E).
- Any strictly positive distribution in the family of pairwise MRF represented by G factorizes as

$$f_{\mathbf{x}}(\mathbf{x}) \propto \exp\left(\sum_{i \in [p]} g_i(x_i) + \sum_{(i,j) \in E} g_{ij}(x_i, x_j)\right)$$

Node Potentials Edge Potentials

Pairwise Markov Random Fields

	$g_i(x_i)$	$g_{ij}(x_i, x_j)$
Ising Model	$ heta^{(i)} x_i$	$\theta^{(ij)}x_ix_j$
Discrete Model	$oldsymbol{ heta}^{(i)}(x_i)$	$\boldsymbol{ heta}^{(ij)}(x_i,x_j)$
Gaussian Model	$\theta_1^{(i)} x_i + \theta_2^{(i)} x_i^2$	$\theta^{(ij)}x_ix_j$

 $f_{\mathbf{x}}(\mathbf{x}) \propto \exp\left(\sum_{i \in [p]} g_i(x_i) + \sum_{(i,j) \in E} g_{ij}(x_i, x_j)\right)$

Examples

Learning Markov Random Fields

- *Structure recovery* Given independent structure (i.e., the edge set *E*).
- Parameter recovery Given independent associated with the joint density.

• Structure recovery - Given independent samples of **x**, estimate the underlying graph

• *Parameter recovery* - Given independent samples of **x**, estimate all the parameters

Comparison with prior works Binary and Discrete

Work	Variable	Consistency	Normality	#computations	#samples
(pairwise)		(i.e. SLLN)	(i.e. CLT)		
Bresler, Mossel, Sly (2013)	Discrete	\checkmark	×	$\bar{\mathcal{O}}(p^{d+2})$	$O(\exp(d)\log p)$
Bresler (2015)	Binary	\checkmark	X	$ ilde{\mathcal{O}}(p^2)$	$O(\exp(\exp(d))\log d)$
Klivans, Meka (2017)	Discrete	\checkmark	X	$ar{\mathcal{O}}(p^2)$	$O(\exp(d)\log p)$
Vuffray, Misra, Lokhov (2020)	Discrete	\checkmark	X	$ar{\mathcal{O}}(p^2)$	$O(\exp(d)\log p)$
This work	Continuous	\checkmark	\checkmark	$ar{\mathcal{O}}(p^2)$	$O(\exp(d)\log p)$

Comparison with prior works Binary and Discrete

Work	Variable	Consistency	Normality	#computations	#samples
(pairwise)		(i.e. SLLN)	(i.e. CLT)		
Bresler, Mossel, Sly (2013)	Discrete	\checkmark	×	$\bar{\mathcal{O}}(p^{d+2})$	$O(\exp(d)\log p)$
Bresler (2015)	Binary	\checkmark	X	$ ilde{\mathcal{O}}(p^2)$	$O(\exp(\exp(d))\log d)$
Klivans, Meka (2017)	Discrete	\checkmark	X	$ar{\mathcal{O}}(p^2)$	$O(\exp(d)\log p)$
Vuffray, Misra, Lokhov (2020)	Discrete	\checkmark	×	$ar{\mathcal{O}}(p^2)$	$O(\exp(d)\log p)$
This work	Continuous	\checkmark	\checkmark	$\bar{\mathcal{O}}(p^2)$	$O(\exp(d)\log p)$

Generalized Interaction Screening Objective (GISO) Vuffray, Misra, Lokhov – NeurIPS 2020

- GISO is a node specific convex objective function.
- graphical models.
- Suppose $f_{x_i}(x_i|x_{-i} = x_{-i}; \boldsymbol{\theta}) \propto \exp$
- Then, population GISO for node *i* is :

• The GISO can recover the graph structure and the 'edge' parameters in discrete

$$p\left(g(\boldsymbol{ heta}, \mathbf{x})\right).$$

 $\mathbb{E}\left[\exp\left(-g(\boldsymbol{ heta}, \mathbf{x})
ight)
ight].$

Continuous Markov Random Fields Beyond the Gaussian case

• Most of the existing methods work with the following extension of the Ising model $f_{\mathbf{x}}(\mathbf{x}) \propto \exp\left(\sum_{i \in [n]} \theta^{i}\right)$

• All of the existing methods require some stringent conditions, for example incoherence, dependency, sparse eigenvalue or restricted strong convexity

$$\theta^{(i)}x_i + \sum_{(i,j)\in E} \theta^{(ij)}x_ix_j \Big).$$

Our method is applicable to a large class of distributions beyond this.

Our work does not require any of these conditions.

Problem Formulation

- Bounded domain
- Parametric potentials: $g_i(\cdot) = \boldsymbol{\theta}^{(i)^T} \boldsymbol{\phi}(\cdot)$

- Bounded parameters
- Sparsity: Maximum degree of the underlying graph is at-most d.

Continuous Random Variables

and
$$g_{ij}(\cdot,\cdot) = \boldsymbol{\theta}^{(ij)^T} \boldsymbol{\psi}(\cdot,\cdot)$$

Examples - Polynomial basis, Harmonic basis

- First, we recover the graph structure and the associated edge parameters 1. 1.1. Extend the GISO to the continuous setting
- Second, we recover the node structure 2.
 - 2.1. Transform the problem of learning node parameters to a sparse linear regression
 - 2.2. Use a robust variation of lasso, and knowledge of the learned edge parameters

Algorithm **Overview**

• For any $i \in [p]$, the conditional density of x_i is of the form $f_{x_i}(x_i|x_{-i} = x_{-i}; \boldsymbol{\vartheta}^{(i)}) \propto \exp\left(\boldsymbol{\vartheta}^{(i)^T} \boldsymbol{\varphi}^{(i)}(\mathbf{x})\right).$

where $\vartheta^{(i)}$ consists of node parameters at is a function of the node and edge basis.

- Population GISO for node i is : $\mathbb{E} \left[\exp \left[\frac{1}{2} + \exp \left[$
- The finite sample GISO can recover the 'edge' parameters in continuous graphical models as well!

Algorithm

Learning edge parameters

where $artheta^{(i)}$ consists of node parameters and edge parameters involving node i and $arphi^{(i)}(\cdot)$

$$\exp\left(-\boldsymbol{\vartheta}^T \boldsymbol{\varphi}^{(i)}(\mathbf{x})
ight)
ight].$$

Algorithm Learning node parameters

• For any $i \in [p]$, the conditional density of x_i is as follows $f_{x_i}(x_i|x_{-i}=x_{-i};\boldsymbol{\vartheta}^{*(i)}) \propto \exp\left(\boldsymbol{\lambda}^{*T}(x_{-i})\boldsymbol{\phi}(x_i)\right)$

• Let
$$\mu^*(x_{-i}) = \mathbb{E}[\phi(x_i)|X_{-i} = x_{-i}].$$

- By duality of exponential family, if we know $\mu^*(x_{-i})$, we can recover $\lambda^*(x_{-i})$.
- Learning $\mu^*(x_{-i})$, can be viewed as a traditional regression problem.
- $\mu^*(\cdot)$ is Lipschitz \longrightarrow approximately *linearize* it \longrightarrow sparse linear regression.

where $\lambda^*(x_{-i})$, the canonical parameter, is linear function of node and edge parameters.

Main results GISO - KL Divergence

- The population GISO is equivalent to a "local" MLE!
- Theorem 1. Consider $i \in [p]$. Then, with $D(\cdot \| \cdot)$ representing a node-specific KLdivergence, $\arg \min Population GISO = \arg \min D(\cdot \| \cdot)$

Main results

Consistency and Normality

- Theorem 2. Consider $i \in [p]$. Then,
 - A. The finite sample estimate of GISO is asymptotically consistent!
 - B. Under some mild conditions, the finite sample estimate of GISO is asymptotically normal!
- Even though the traditional MLE is intractable, this 'local' M-estimation is tractable. • However, unlike traditional MLE, this is not asymptotically efficient.

Main results **Finite Sample Guarantees**

• Theorem 3. Structure recovery can be achieved with $\Omega(\exp(d)\log(p))$ samples • Theorem 4. Parameter recovery can be achieved with $\Omega(\exp(d)\log(p))$ samples

Thank you!