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Markov Random Fields

• Diagrammatic representations of 
probability distributions with a 
Markovian structure

Undirected Graphical Models

Season

Flu Hay-fever

Runny 
Nose

Body 
Temperature

• Given the value of neighbors, a node is 
independent of the remaining nodes 

• Body Temperature Runny Nose  Flu⊥⊥ |

Local Markov Property



Pairwise Markov Random Fields

• Consider an undirected graph .G = ([p], E)

• Any strictly positive distribution in the family of pairwise MRF represented by 
 factorizes as G

Node Potentials Edge Potentials



Pairwise Markov Random Fields

Examples

Ising Model

Discrete Model

Gaussian Model



Learning Markov Random Fields

• Structure recovery - Given independent samples of    , estimate the underlying graph 
structure (i.e., the edge set ).E

• Parameter recovery - Given independent samples of    , estimate all the parameters 
associated with the joint density.



Comparison with prior works
Binary and Discrete



Comparison with prior works
Binary and Discrete



Generalized Interaction Screening Objective (GISO)

• GISO is a node specific convex objective function.

Vuffray,  Misra,  Lokhov — NeurIPS 2020

• The GISO can recover the graph structure and the ‘edge’ parameters in discrete 
graphical models. 

• Suppose 

• Then, population GISO for node     is :



Continuous Markov Random Fields

• Most of the existing methods work with the following extension of the Ising model -

Beyond the Gaussian case

• All of the existing methods require some stringent conditions, for example - 
incoherence, dependency, sparse eigenvalue or restricted strong convexity

Our method is applicable to a large class of distributions beyond this.

Our work does not require any of these conditions.



Problem Formulation

• Bounded domain     

• Parametric potentials :                                                                                       and

• Bounded parameters

• Sparsity : Maximum degree of the underlying graph is at-most

Examples - Polynomial basis, Harmonic basis

Continuous Random Variables



Algorithm

1. First, we recover the graph structure and the associated edge parameters —  

1.1. Extend the GISO to the continuous setting 

2. Second, we recover the node structure —  

2.1. Transform the problem of learning node parameters to a sparse linear 
regression 

2.2. Use a robust variation of lasso, and knowledge of the learned edge parameters

Overview



    where        consists of node parameters and edge parameters involving node    and           

    is a function of the node and edge basis.  

Algorithm

• For any                 the conditional density of      is of the form - 

Learning edge parameters

• The finite sample GISO can recover the ‘edge’ parameters in continuous graphical 
models as well! 

• Population GISO for node     is :



Algorithm

• For any                 the conditional density of      is as follows -

Learning node parameters

where                  , the canonical parameter, is linear function of node and edge parameters.

• Let                                                                .                                                                

• By duality of exponential family, if we know                   we can recover

• Learning                     can be viewed as a traditional regression problem.

•              is Lipschitz          approximately linearize it  sparse linear regression.



• The population GISO is equivalent to a ‘‘local’’ MLE! 

• Theorem 1. Consider                 Then, with                  representing a node-specific KL-
divergence,  

Main results
GISO - KL Divergence



• Theorem 2. Consider                 Then, 

A. The finite sample estimate of GISO is asymptotically consistent! 

B. Under some mild conditions, the finite sample estimate of GISO is 
asymptotically normal! 

• Even though the traditional MLE is intractable, this ‘local’ M-estimation is tractable. 

• However, unlike traditional MLE, this is not asymptotically efficient.

Main results
Consistency and Normality



Main results
Finite Sample Guarantees

• Theorem 3. Structure recovery can be achieved with samplesΩ(exp(d)log(p))
• Theorem 4. Parameter recovery can be achieved with samplesΩ(exp(d)log(p))



Thank you!


