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• An exponential family is a set of parametric proba-
bility distributions with probability densities of the
following canonical form:

fx(x;θ) ∝ exp
(
θTφ(x) + β(x)

)
,

where x ∈ X is a realization of the random vector x,
θ ∈ Rk is the natural parameter, φ : X → Rk is the
natural statistic, k denotes the number of parameters,
and β is the log base function.

• Motivated by the kind of constraints on the natural
parameters we focus on, an equivalent representation
of fx(x;θ) is:

fx(x; Θ) ∝ exp

(〈〈
Θ,Φ(x)

〉〉)
where Θ = [Θijl] ∈ Rk1×k2×k3 is the natural para-
meter, Φ = [Φijl] : X → Rk1×k2×k3 is the natural
statistic, k1 × k2 × k3 − 1 = k, and

〈〈
Θ,Φ(x)

〉〉
deno-

tes the tensor inner product, i.e., the sum of product
of entries of Θ and Φ(x).

Minimal Exponential Family

• An exponential family is minimal if there does
not exist a nonzero tensor U ∈ Rk1×k2×k3 such that〈〈
U,Φ(x)

〉〉
is equal to a constant for all x ∈ X .

Truncated Exponential Family

• Truncated exponential family is a set of parametric
probability distributions resulting from truncating the
support of an exponential family. They share the same
parametric form with their non-truncated counterparts
up to a normalizing constant.

Learning Exponential Family

• If Φ and X are known, then learning an exponential
family distribution is equivalent to learning Θ.
• There is no known method (without any abstract
condition) that is both computationally and statisti-
cally efficient for learning Θ of a minimal truncated
exponential family distribution.

Exponential Family

• The MLE of the parametric family fx(·; Θ) minimizes

− 1

n

n∑
t=1

〈〈
Θ,Φ(x(t))

〉〉
+ log

∫
x∈X

exp
(〈〈

Θ,Φ(x
〉〉)

dx.

• The MLE is

1. Consistent

2. Asymptotically normal

3. Asymptotically efficient

4. Computationally hard

Maximum Likelihood Estimator

We provide a computationally efficient proxy for
the maximum likelihood estimator for learning

exponential family distributions.

Takeaway

Loss Function

• Given n samples x(1) · · · ,x(n) of x, we propose the
following computationally tractable loss function

Ln(Θ) =
1

n

n∑
t=1

exp
(
−
〈〈

Θ, Φ(x(t))
〉〉)

.

where Φ(·) := Φ(·) − EUX [Φ(x)] with UX being the
uniform distribution over X .

• The loss function Ln(Θ) is an empirical average of
the inverse of the function of x that the probability
density fx(x; Θ) is proportional to.

Estimator

• The estimator Θ̂n is obtained by minimizing Ln(Θ)
over all Θ in the constraint set Λ, i.e.,

Θ̂n ∈ arg min
Θ∈Λ

Ln(Θ),

• We implement a projected gradient descent with
O(poly(k1k2/ε)) iterations to solve the above convex
minimization problem.

Algorithm

1 -
Minimizing the population version of Ln(Θ)

is equivalent to the MLE of fx(·; Θ∗ −Θ).

• arg minL(Θ) = arg minD(UX ‖ fx(·; Θ∗ −Θ))

where L(Θ) = E
[

exp
(
−
〈〈

Θ, Φ(x)
〉〉)]

is the popu-

lation version of Ln(Θ) and D(· ‖ ·) is the Kullback-
Leibler (KL) divergence.

• L(Θ) is minimized if and only if Θ = Θ∗.

2 - Θ̂n is asymptotically consistent and normal

• The traditional MLE is intractable.

• Our M-estimation is tractable (but not asymptoti-
cally efficient).

3 -

Parameter recovery with an `2 error of α with:

• O(poly(k1k2/α)) samples and

• O(poly(k1k2/α)) computations.

• Our work does not require any stringent conditions
common in the literature, e.g., incoherence, depen-
dency, sparse eigenvalue or restricted strong convexity.

• Learning graphical models focuses on local assump-
tions on the parameters such as node-wise-sparsity
while our work focuses on global structures on the
parameters (e.g., a low-rank constraint).

Main Results

Our framework can capture various constraints on the
natural parameters including:

1. Decomposition of Θ as a sparse matrix
2. Decomposition of Θ as a low-rank matrix
3. Decomposition of Θ as a sparse matrix and a

low-rank matrix

Examples

Can computational and asymptotic
efficiency be achieved by a single estimator

for this class of exponential family?

Open Question
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