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Exponential Family

e An exponential family is a set of parametric proba-
bility distributions with probability densities of the
following canonical form:

fx(x;0) o exp (07 p(x) + B(x)),

where x € X is a realization of the random vector x,
0 € R” is the natural parameter, ¢ : X — RF is the
natural statistic, k denotes the number of parameters,
and (3 is the log base function.

e Motivated by the kind of constraints on the natural
parameters we focus on, an equivalent representation

of fx(x;0) is:
fx(x;0) o exp <<<@ (I)(X)>>>

where © = [0,;] € RF>*2Xks g the natural para-
meter, ® = [®;;] : X — RF>F2Xks jg the natural
statistic, k1 X ko X ks —1 =k, and <<@,¢’(X)>> deno-
tes the tensor inner product, i.e., the sum of product
of entries of © and ®(x).

‘ Minimal Exponential Family ‘

e An exponential family is minimal if there does
not exist a nonzero tensor U € R¥1*k2Xks gych that
((U,®(x))) is equal to a constant for all x € X.

‘ Truncated Exponential Family

e Truncated exponential family is a set of parametric
probability distributions resulting from truncating the
support of an exponential family. They share the same
parametric form with their non-truncated counterparts
up to a normalizing constant.

‘ Learning Exponential Family

e If ® and X are known, then learning an exponential
family distribution is equivalent to learning ©.

e There is no known method (without any abstract
condition) that is both computationally and statisti-
cally efficient for learning © of a minimal truncated
exponential family distribution.

Maximum Likelihood Estimator

e The MLE of the parametric family f(-; ©) minimizes

Y0 +og | e (0. 0(x)))ax

e The MLE is
1. Consistent
2. Asymptotically normal
3. Asymptotically efficient

4. Computationally hard

Takeaway

We provide a computationally efficient proxy for
the maximum likelihood estimator for learning
exponential family distributions.

Algorithm

Loss Function

e Given n samples x(1) ... x(") of x, we propose the
following computationally tractable loss function

n

L,(©) = %Zcxp (— (0, 8(x)))).
where @(-) = O(-) — Eyy, [P(x)] with Uy being the

uniform distribution over X.

e The loss function £,,(0) is an empirical average of
the inverse of the function of x that the probability
density fx(x;©) is proportional to.

Estimator

e The estimator ©,, is obtained by minimizing £, (©)
over all © in the constraint set A, i.e.,

0, € argmin L, (0),
OcA
e We implement a projected gradient descent with
O(poly(k1kz/€)) iterations to solve the above convex
minimization problem.

I I I ]
Minimizing the population version of £, (©)
is equivalent to the MLE of fi(-; ©* — ©).

Main Results

1-

e argmin £(0O) Uy || fx(;0* —O))
where £(0) = E[exp (- <<®,@(x)>>)} is the popu-
lation version of £, (©) and D(- || -) is the Kullback-
Leibler (KL) divergence.

e £(0) is minimized if and only if © = ©*.

= arg min D(

2 - | ©,, is asymptotically consistent and normal

e The traditional MLE is intractable.

e Our M-estimation is tractable (but not asymptoti-
cally efficient).

Parameter recovery with an f5 error of a with:
3-| e O(poly(kiks/)) samples and
e O(poly(kiks/a)) computations.

e Our work does not require any stringent conditions
common in the literature, e.g., incoherence, depen-
dency, sparse eigenvalue or restricted strong convexity.
e Learning graphical models focuses on local assump-
tions on the parameters such as node-wise-sparsity
while our work focuses on global structures on the
parameters (e.g., a low-rank constraint).

Examples <

Our framework can capture various constraints on the
natural parameters including:
1. Decomposition of © as a sparse matrix
2. Decomposition of © as a low-rank matrix
3. Decomposition of © as a sparse matrix and a
low-rank matrix

Open Question N\
Can computational and asymptotic

efficiency be achieved by a single estimator
for this class of exponential family?




