A Computationally Efficient Method for Learning Exponential Family Distributions

Abhin Shah, Devavrat Shah, Gregory Wornell

- An exponential family is a set of parametric probability distributions with probability densities of the following canonical form:

$$
f_{\mathbf{x}}(\mathbf{x} ; \boldsymbol{\theta}) \propto \exp \left(\boldsymbol{\theta}^{T} \boldsymbol{\phi}(\mathbf{x})+\beta(\mathbf{x})\right),
$$

where $\mathbf{x} \in \mathcal{X}$ is a realization of the random vector \mathbf{x}, $\boldsymbol{\theta} \in \mathbb{R}^{k}$ is the natural parameter, $\boldsymbol{\phi}: \mathcal{X} \rightarrow \mathbb{R}^{k}$ is the natural statistic, k denotes the number of parameters, and β is the \log base function.

- Motivated by the kind of constraints on the natural parameters we focus on, an equivalent representation of $f_{\mathbf{x}}(\mathbf{x} ; \boldsymbol{\theta})$ is:

$$
f_{\mathbf{x}}(\mathbf{x} ; \Theta) \propto \exp (\langle\langle\Theta, \Phi(\mathbf{x})\rangle\rangle)
$$

where $\Theta=\left[\Theta_{i j l}\right] \in \mathbb{R}^{k_{1} \times k_{2} \times k_{3}}$ is the natural parameter, $\Phi=\left[\Phi_{i j l}\right]: \mathcal{X} \rightarrow \mathbb{R}^{k_{1} \times k_{2} \times k_{3}}$ is the natural statistic, $k_{1} \times k_{2} \times k_{3}-1=k$, and $\langle\langle\Theta, \Phi(\mathbf{x})\rangle\rangle$ denotes the tensor inner product, i.e., the sum of product of entries of Θ and $\Phi(\mathbf{x})$.

Minimal Exponential Family

- An exponential family is minimal if there does not exist a nonzero tensor $\mathbf{U} \in \mathbb{R}^{k_{1} \times k_{2} \times k_{3}}$ such that $\langle\langle\mathbf{U}, \Phi(\mathbf{x})\rangle\rangle$ is equal to a constant for all $\mathbf{x} \in \mathcal{X}$.

> Truncated Exponential Family

- Truncated exponential family is a set of parametric probability distributions resulting from truncating the support of an exponential family. They share the same parametric form with their non-truncated counterparts up to a normalizing constant.

Learning Exponential Family

- If Φ and \mathcal{X} are known, then learning an exponential family distribution is equivalent to learning Θ.
- There is no known method (without any abstract condition) that is both computationally and statistically efficient for learning Θ of a minimal truncated exponential family distribution.

Maximum Likelihood Estimator

- The MLE of the parametric family $f_{\mathbf{x}}(\cdot ; \Theta)$ minimizes
$-\frac{1}{n} \sum_{t=1}^{n}\left\langle\left\langle\Theta, \Phi\left(\mathbf{x}^{(t)}\right)\right\rangle\right\rangle+\log \int_{\mathbf{x} \in \mathcal{X}} \exp (\langle\langle\Theta, \Phi(\mathbf{x}\rangle\rangle) d \mathbf{x}$.
- The MLE is

1. Consistent
2. Asymptotically normal
3. Asymptotically efficient
4. Computationally hard

Takeaway

We provide a computationally efficient proxy for the maximum likelihood estimator for learning exponential family distributions.

Algorithm
 Loss Function

- Given n samples $\mathbf{x}^{(1)} \cdots, \mathbf{x}^{(n)}$ of \mathbf{x}, we propose the following computationally tractable loss function

$$
\mathcal{L}_{n}(\Theta)=\frac{1}{n} \sum_{t=1}^{n} \exp \left(-\left\langle\left\langle\Theta, \Phi\left(\mathbf{x}^{(t)}\right)\right\rangle\right\rangle\right)
$$

where $\Phi(\cdot):=\Phi(\cdot)-\mathbb{E}_{\mathcal{U}_{\mathcal{X}}}[\Phi(\mathbf{x})]$ with $\mathcal{U}_{\mathcal{X}}$ being the uniform distribution over \mathcal{X}.

- The loss function $\mathcal{L}_{n}(\Theta)$ is an empirical average of the inverse of the function of \mathbf{x} that the probability density $f_{\mathbf{x}}(\mathbf{x} ; \Theta)$ is proportional to.

Estimator

- The estimator $\hat{\Theta}_{n}$ is obtained by minimizing $\mathcal{L}_{n}(\Theta)$ over all Θ in the constraint set Λ, i.e.,

$$
\hat{\Theta}_{n} \in \underset{\Theta \in \Lambda}{\arg \min } \mathcal{L}_{n}(\Theta)
$$

- We implement a projected gradient descent with $O\left(\operatorname{poly}\left(k_{1} k_{2} / \epsilon\right)\right)$ iterations to solve the above convex minimization problem.

```
Minimizing the population version of }\mp@subsup{\mathcal{L}}{n}{}(\Theta
is equivalent to the MLE of }\mp@subsup{f}{\mathbf{x}}{(}(\cdot;\mp@subsup{\Theta}{}{*}-\Theta)\mathrm{ .
```

- $\arg \min \mathcal{L}(\Theta)=\arg \min D\left(\mathcal{U}_{\mathcal{X}} \| f_{\mathrm{x}}\left(\cdot ; \Theta^{*}-\Theta\right)\right)$ where $\mathcal{L}(\Theta)=\mathbb{E}[\exp (-\langle\langle\Theta, \Phi(\mathbf{x})\rangle\rangle)]$ is the population version of $\mathcal{L}_{n}(\Theta)$ and $D(\cdot \| \cdot)$ is the KullbackLeibler (KL) divergence.
- $\mathcal{L}(\Theta)$ is minimized if and only if $\Theta=\Theta^{*}$.
$\underline{2}-\hat{\Theta}_{n}$ is asymptotically consistent and normal
- The traditional MLE is intractable.
- Our M-estimation is tractable (but not asymptotically efficient).

Parameter recovery with an ℓ_{2} error of α with:

- $O\left(\operatorname{poly}\left(k_{1} k_{2} / \alpha\right)\right)$ samples and
- $O\left(\operatorname{poly}\left(k_{1} k_{2} / \alpha\right)\right)$ computations.
- Our work does not require any stringent conditions common in the literature, e.g., incoherence, dependency, sparse eigenvalue or restricted strong convexity.
- Learning graphical models focuses on local assumptions on the parameters such as node-wise-sparsity while our work focuses on global structures on the parameters (e.g., a low-rank constraint).

Examples

Our framework can capture various constraints on the natural parameters including:

1. Decomposition of Θ as a sparse matrix
2. Decomposition of Θ as a low-rank matrix
3. Decomposition of Θ as a sparse matrix and a low-rank matrix

Open Question

Can computational and asymptotic efficiency be achieved by a single estimator for this class of exponential family?

