A Computationally Efficient Method for Learning Exponential Family Distributions

Abhin Shah, Devavrat Shah, Gregory W. Wornell

Massachusetts Institute of Technology

Motivation **Exponential Family Distributions**

x_1	x_2	x_3	X_4	•••	x_{n-1}	X_n
81	7	?	44		3	6
11	?	33	91		66	63
55	77	55	97		?	97
35	1	40	17		68	?

Joint distribution — Conditional distribution

Exponential Family Distributions

• No known method that is both computationally and statistically efficient for learning Θ

 $f_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta}) \propto \exp\left(\boldsymbol{\theta}^T \boldsymbol{\phi}(\mathbf{x}) + \beta(\mathbf{x})\right)$

 $f_{\mathbf{x}}(\mathbf{x};\Theta) \propto \exp\left(\left\langle \Theta, \Phi(\mathbf{x}) \right\rangle\right)$

We focus on — Minimal and truncated — exponential family

MLE MLE

$$\min -\frac{1}{n} \sum_{t=1}^{n} \left\langle \Theta, \Phi(\mathbf{x}^{(t)}) \right\rangle$$

- 1. Consistency
- 2. Asymptotic normality
- 3. Asymptotic efficiency
- 4. Computationally hard

We provide a computationally efficient proxy for the MLE.

 $+\log \int_{\mathbf{x}\in\mathcal{X}} \exp\left(\left\langle \Theta, \Phi(\mathbf{x}) \right\rangle\right) d\mathbf{x}.$

Loss function

- A novel, computationally tractable loss function 1. $\mathcal{L}_n(\Theta) = \frac{1}{n} \sum_{t=1}^n \Theta$
- Minimizing the population version of $\mathcal{L}_n(\Theta)$ is equivalent to a MLE of $f_x(\mathbf{x}; \Theta^* \Theta)$.

$$\exp\left(-\left\langle\Theta, \Phi(\mathbf{x}^{(t)})\right\rangle\right)$$

Main Results

Consistency and Normality

- $\hat{\Theta}_n$ is asymptotically consistent!
- Under some mild conditions, $\hat{\Theta}_n$ is asymptotically normal!

- Even though MLE is intractable, this M-estimation is tractable.
- However, unlike MLE, this is not asymptotically efficient.

 $\hat{\Theta}_n \in \operatorname*{arg\,min}_{\Theta \in \Lambda} \mathcal{L}_n(\Theta).$

Main Results **Finite-sample guarantees**

- Structure recovery with $\Omega(\text{poly}(k_1k_2))$ samples.
- sparse, low-rank, sparse-plus-low-rank
 - 1. \bigcirc is a sparse matrix
 - 2. \bigcirc is a low-rank matrix
 - (-) is a sparse-plus-low-rank matrix 3.

• Our framework can capture various constraints on the natural parameters including

Please visit our poster - Thank you!

Open question

Can computational and asymptotic efficiency be achieved by a single estimator for this class of exponential family?