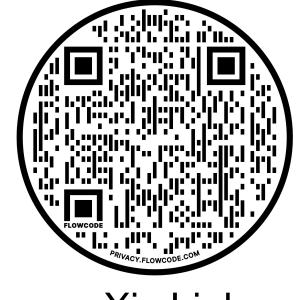
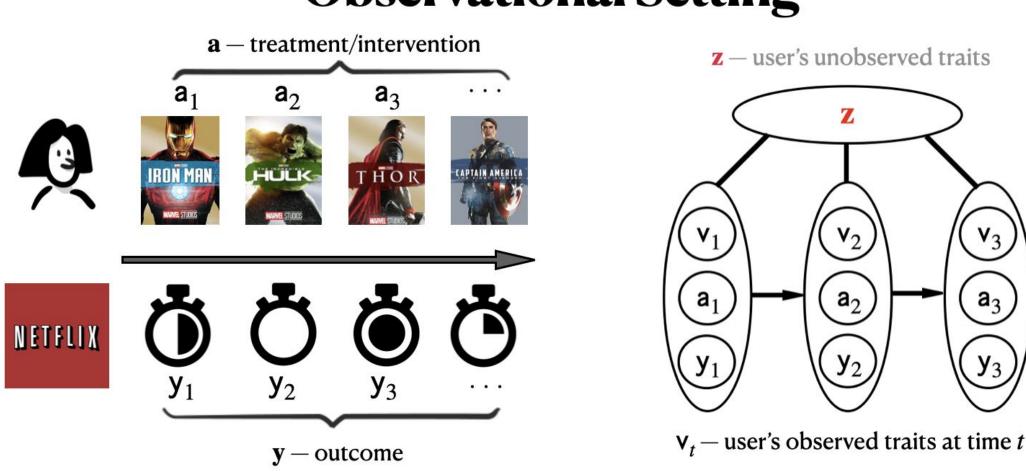
On Counterfactual Inference with Unobserved Confounding

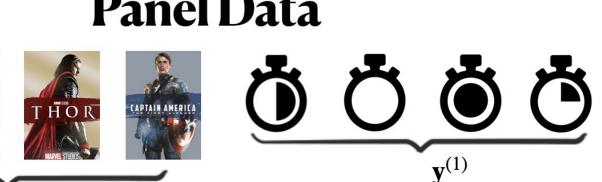
Raaz Dwivedi raaz@mit.edu HARVARD UNIVERSITY

Devavrat Shah devavrat@mit.edu

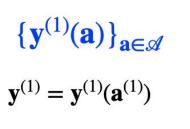


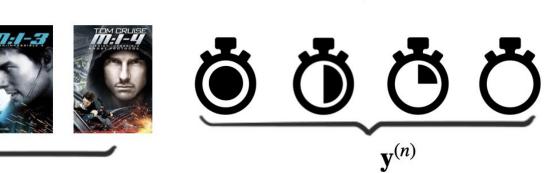
arXiv Link



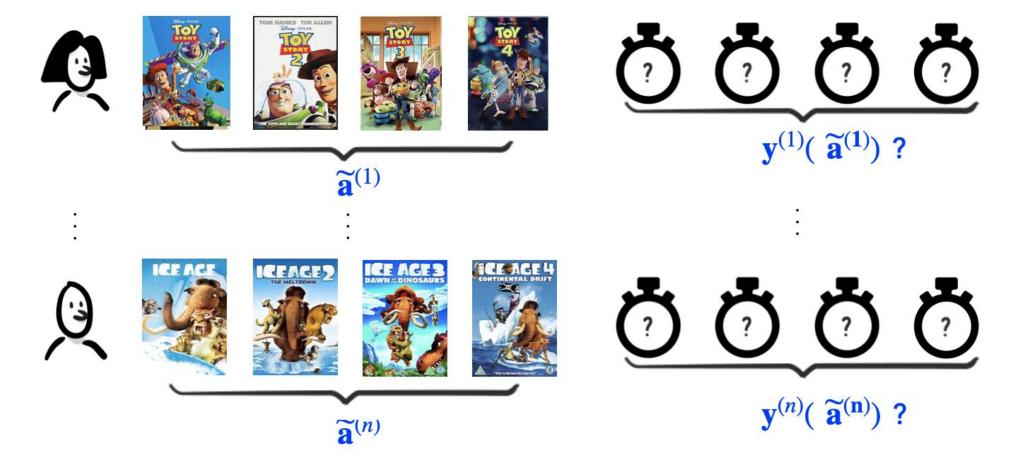


Potential Outcomes



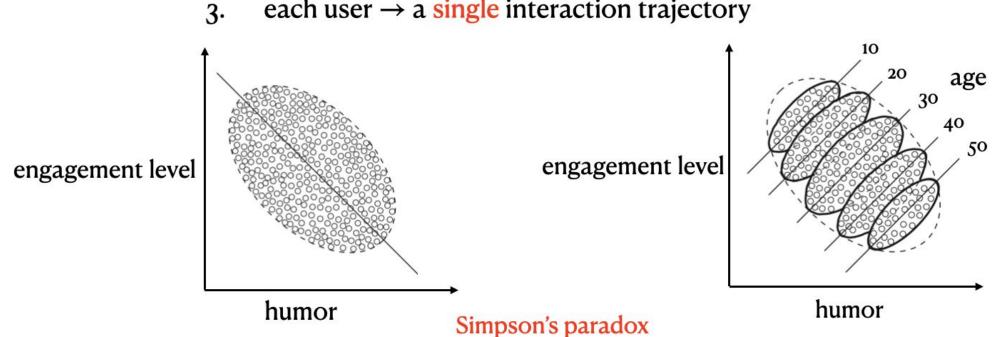


Goal: What-if?

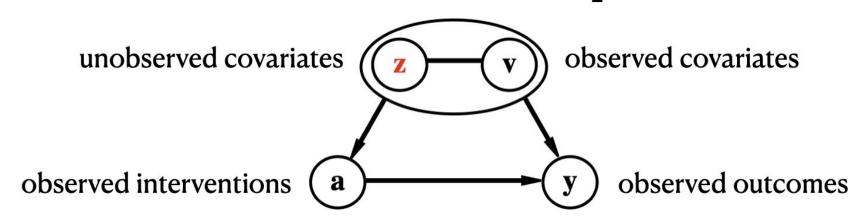


Challenges

- unobserved factors → spurious associations
- users → heterogeneous
- each user \rightarrow a single interaction trajectory



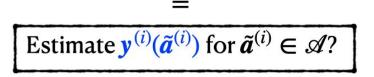
Problem Setup



n heterogenous and independent users with one observation each - $\{v^{(i)}, a^{(i)}, y^{(i)}\}_{i=1}^n$ p-dimensional

Goal: Counterfactual Questions

For user $i \in [n]$, what would have happened if alternative treatments were assigned?



Suffices to learn $f(\mathbf{y} = \cdot \mid \mathbf{a} = \cdot, \mathbf{z}^{(i)}, \mathbf{v}^{(i)})$ for all $i \in [n]$, but each user may have different \mathbf{z}

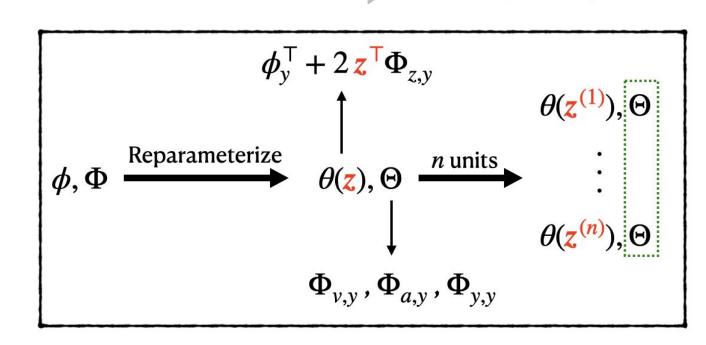
Can we learn *n* different distributions with *one* sample per distribution?

Our Approach

We posit a joint exponential family distribution for $\mathbf{w} \triangleq (\mathbf{z}, \mathbf{v}, \mathbf{a}, \mathbf{y})$ $f(w) \propto \exp(\phi^{\top} w + w^{\top} \Phi w)$

$$f(\mathbf{y} \mid \mathbf{a}, \mathbf{z} = \mathbf{z^{(i)}}, \mathbf{v} = \mathbf{v^{(i)}}) \propto \exp\left(\left[\begin{array}{c} \boldsymbol{\phi_y}^\top + 2\mathbf{z^{(i)}}^\top \boldsymbol{\Phi}_{z,y} + 2\mathbf{v^{(i)}}^\top \boldsymbol{\Phi}_{v,y} + 2\mathbf{a}^\top \boldsymbol{\Phi}_{a,y} \end{array}\right] \mathbf{y} + \mathbf{y}^\top \boldsymbol{\Phi}_{y,y} \mathbf{y}\right)$$
different for different users

n heterogeneous conditional distributions same exp. family but with diff. parameters

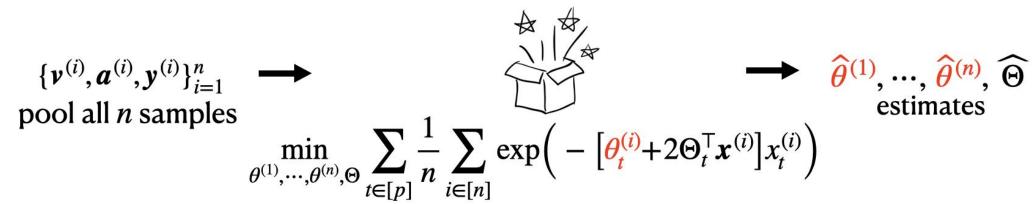


Inference Tasks

counterfactual User-level $-\theta^*(\mathbf{z}^{(i)})$ for all $i \in [n]$ 1. Parameters: distribution Population-level — Θ^*

counterfactual 2. Potential Outcomes: $\mu^{(i)} \triangleq \mathbf{E} \left[\mathbf{y}^{(i)}(\tilde{\mathbf{a}}^{(i)}) | \mathbf{z} = \mathbf{z}^{(i)}, \mathbf{v} = \mathbf{v}^{(i)} \right]$ mean

Parameter Estimation

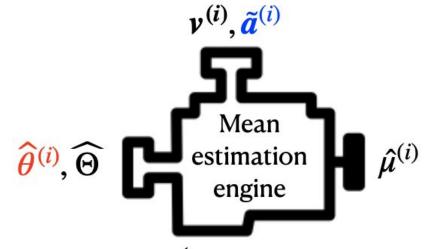


 Θ^* has sparse rows $\theta^{\star}(\mathbf{z}^{(i)}) \in \operatorname{set} \mathscr{B}$ Assum 2:

$$\|\Theta^{\star} - \widehat{\Theta}\|_{2,\infty} \leq \epsilon \qquad \text{when } n \geq O\left(\frac{p^2 \left(p + M_n(\epsilon^2)\right)}{\epsilon^4}\right)$$
 For all i , $\text{MSE}\left(\theta^{\star}(\mathbf{z}^{(i)}), \widehat{\theta}^{(i)}\right) \leq \max\left\{\epsilon^2, \frac{M(c)}{p}\right\} \text{ when } n \geq O\left(\frac{p^2 \left(pM(c) + M_n(\epsilon^2)\right)}{\epsilon^4}\right)$ metric entropy of \mathscr{B}
$$M_n(\epsilon) = nM(n\epsilon)$$

★ When $\mathcal{B} = s$ —sparse linear combinations of k known vectors, $M(c) = O(s \log(k))$ and $M_n(\epsilon) = O(\frac{s \log k}{\epsilon})$

Outcome Estimation



$$\widehat{f}(y \mid \boldsymbol{a} = \widetilde{\boldsymbol{a}}^{(i)}, \boldsymbol{z} = \boldsymbol{z}^{(i)}, \boldsymbol{v} = \boldsymbol{v}^{(i)}) \propto \exp\left(\left[\widehat{\boldsymbol{\theta}}(\boldsymbol{z}^{(i)}) + 2\boldsymbol{v}^{(i)\top}\widehat{\boldsymbol{\Phi}}_{v,y} + 2\widetilde{\boldsymbol{a}}^{(i)\top}\widehat{\boldsymbol{\Phi}}_{a,y}\right]\boldsymbol{y} + \boldsymbol{y}^{\top}\widehat{\boldsymbol{\Phi}}_{y,y}\boldsymbol{y}\right)$$
For all i and any $\widetilde{\boldsymbol{a}}^{(i)} \in \mathcal{A}$,

 $MSE\left(\mu^{(i)}, \hat{\mu}^{(i)}\right) \le \epsilon^2 + \frac{M(c)}{n} \quad \text{when } n \ge O\left(\frac{p^2\left(pM(c) + M_n(\epsilon^2)\right)}{\epsilon^4}\right)$

Application: Denoise User-wise Data

No systematically unobserved covariates

Noisy observed data = true data + measurement error

 $\Delta \mathbf{x}$

Assum 1: Only half users have error: $\Delta \mathbf{x}^{(i)} = \mathbf{0}$ for $i \in \{n/2, \dots, n\}$

Assum 2: Data has sparse error: $\|\Delta \mathbf{x}^{(i)}\|_0 \le s$ for $i \in \{1, \dots, n/2\}$

Goal: Estimate the true data

For all
$$i$$
, $\|\Delta \mathbf{x}^{(i)}, \widehat{\Delta \mathbf{x}^{(i)}}\|^2 \le \max\left\{\frac{\epsilon^2}{s}, \frac{s}{p}\right\} + \epsilon^2$ when $n \ge O\left(\frac{s^2p}{\epsilon^4}\right)$