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Selective Regression Under Fairness Criteria

Selective Prediction
● We use Heteroskedastic neural network (NN) which requires training a 

single NN by assuming Y|X is Gaussian.
● We relax Y ⊥ D | Φ(X) by using conditional mutual information I(Y; D | Φ

(X)) which can be upper bounded (Lee et al,. 2021) by:
○ I(Y; D | Φ(X)) ≤ EΦ(X),Y,D  [log P(Y |Φ(X), D)] − ED [EΦ(X),Y [log P(Y |Φ(X), D)]].

● We train subgroup-specific Gaussian models to learn P(Y |Φ(X), D).

Algorithm 1: Imposing sufficiency

Monotonic Selective Risk (MSR): proposed novel fairness criteria

Algorithm 2: Imposing calibration for mean & variance
● We let Φ = (Φ1 , Φ2 ) and use residual-based NN by letting (a) the predictor 

depend only on Φ1  and (b) the uncertainty measure depend only on Φ2 .
● We relax E[Y | Φ(X), D] = E[Y | Φ(X)] by the contrastive loss:

○ ED [EΦ(X),Y [ (Y- E[Y | Φ1 (X), D])2 ]] - EΦ(X),Y,D [ (Y- E[Y | Φ1 (X), D])2 ].

● We train subgroup-specific mean prediction models to learn E[Y|Φ1(X), D].
● We impose calibration for variance similarly.

● A feature representation Φ(X) satisfies sufficiency if 
■ Y ⊥ D | Φ(X). 

● If Φ(X) is sufficient, then conditional mean as the predictor and conditional 
variance as the uncertainty measure ensures MSR.

Theorem: sufficiency ⇒ MSR

Disparities between subgroups in selective regression:

● A feature representation Φ(X) is calibrated for mean and variance if
■ E[Y | Φ(X), d] = E[Y | Φ(X)] ∀ d ∈ D.
■ Var[Y | Φ(X), d] = Var[Y | Φ(X)] ∀ d ∈ D.

● If Φ(X) is calibrated for mean and variance, then conditional mean as the 
predictor and conditional variance as the uncertainty measure ensures MSR.

Theorem: calibration for mean & variance ⇒ MSR

● MSR requires the risk of each subgroup to monotonically decrease with a 
decrease in coverage. 

● We construct our predictor f and our uncertainty measure g using a feature 
representation Φ. 

● The subgroup MSE for d ∈ D, as a function of f and g, for a fixed coverage 
(parameterized by τ) is

■ MSE(f, g, τ, d) = E[ (Y- f(Φ(X)))2 | g(Φ(X)) ≤ τ , D = d]. 
● We say that f and g satisfy MSR if for any τ < τ’

■ MSE(f, g, τ, d) ≤ MSE(f, g, τ’, d) ∀ d ∈ D.

● We consider predicting annual medical expenses charged to patients from 
age, BMI, number of children, etc as in the Insurance dataset. 

● Following [Zaoui et al., 2020], we use conditional expectation as our predictor 
& conditional variance as our uncertainty measure. 

● While decreasing the coverage improves the 
performance for the majority subgroup (i.e., 
females), the performance for the minority 
subgroup (i.e., males) degrades.

We demonstrate and investigate the performance 
disparities across subgroups for selective regression as 

well as develop novel methods to mitigate such disparities.
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● A trustworthy machine learning (ML) system should reliably 
communicate the uncertainty in its predictions.

● Consider a loan approval ML system designed to predict loan terms 
(e.g., loan approval, interest rate). 

● If the model’s uncertainty is high for an applicant, the prediction 
can be rejected to avoid potentially costly errors.

● The decision-maker can intervene and take remedial actions before 
arriving at a decision.

Selective Classification
● Classifiers can have good average performance but may perform 

poorly on certain subgroups [Jones et al., 2020].
● To mitigate such disparities, recent works [Lee et al., 2021 etc] 

proposed methods for performing fair selective classification.
● For a classification task, an uncertainty measure can be learned 

using the softmax output (of an existing classifier).
● However,  there is no direct method to extract an uncertainty 

measure from an existing regressor designed only to predict the 
conditional mean!

Uncertainty Measure

Quantitative comparison

● If we have an uncertainty/confidence measure for each prediction, 
we can decide to abstain from decision making if our confidence is 
below a certain threshold.

● With a good confidence measure, increasing the threshold results 
in a better performance.

● The tradeoff is that we have predictions for a fewer samples (i.e., 
low coverage).


