Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge

Abhin Shah MIT abhin@mit.edu

Karthikeyan Shanmugam Google Research

Kartik Ahuja Meta Al

Causal Effect Estimation

Causal effect of a drug on cholesterol level from observational data

 $\mathbb{P}(\text{cholesterol} | do(\text{drug}))$?

Observational Data

Age	Gender	Blood Pressure	Drug	Cholesterol (0)	Cholesterol (1)
22	Male	145/95	0	fff	?
26	Female	135/80	0	* 1 *	?
58	Female	130/70	1	?	î
50	Male	145/80	1	?	* 1 *
24	Female	150/85	1	?	î

Challenge — Unobserved Confounding

Simpson's paradox: Which subsets of the observed features should be used?

Problem Formulation

- **u** : unobserved exogenous variables
- x : observed features
- *t*: observed binary treatment variable
- *y* : observed outcome
- \mathcal{G} : DAG over the set of vertices $\{\mathbf{u}, \mathbf{x}, t, y\}$

Valid adjustments

 \mathbf{z} is a valid adjustment set if $\mathbb{P}(y \mid do(t=t)) = \mathbb{E}_{\mathbf{z}}[\mathbb{P}(y \mid \mathbf{z}=z, t=t))]$

Pearlian Framework

DAG knowledge

Given the complete knowledge of the DAG, graphical criteria could be used to check whether **z** is valid for adjustment

Potential Outcomes

<u>Ignorability</u>

x satisfies ignorability

x is a valid adjustment.

How much of the DAG do we need to know?

To find the causal effect of t on y, i.e., $\mathbb{P}(y | do(t = t))$

Can we significantly reduce the structural knowledge required about the DAG and yet find valid adjustment sets?

The knowledge of one causal parent of the treatment is sufficient to find a class of valid adjustment sets!

Assumptions

Semi-Markovian model

- The treatment t has the outcome y as its only child.
- 2. The outcome y has no child.

Back-door Criterion

A popular sufficient graphical criterion for finding valid adjustments

Under our assumptions, a set ${\bf z}$ satisfies the back-door criterion in ${\cal G}$ if

1. **z** blocks every path between t and y in \mathcal{G} that contains an arrow into t.

Sets satisfying back-door: $\{x_1, x_2\}$ and $\{x_2\}$

Conditional Independence ← Back-door

- x_t : an observed feature that is a direct causal parent of t.
- Consider any subset of the remaining observed features i.e., $\mathbf{z} \subseteq \mathbf{x} \setminus \{x_t\}$.
- **z** satisfies the back-door criterion if and only if $x_t \perp y \mid \mathbf{z}, t$.

Algorithms

- Subset Search:
 - → Use a subset based search procedure that exploits conditional independence
 (CI) testing to check our invariance criterion.
- IRM-based:
- → Use a sub-sampling trick to leverage Invariant Risk Minimization (IRM) as a scalable approximation for CI testing.

IHDP

A RCT studying cognitive test score of low-birth-weight, premature infants.

Cattaneo

Studies the effect of maternal smoking on babies' birth weight.

On Counterfactual Inference with Unobserved Confounding

Raaz Dwivedi raaz@mit.edu HARVARD UNIVERSITY

Devavrat Shah devavrat@mit.edu

Potential Outcomes

$$\{\mathbf{y}^{(n)}(\mathbf{a})\}_{\mathbf{a}\in\mathscr{A}}$$
$$\mathbf{y}^{(n)}=\mathbf{y}^{(n)}(\mathbf{a}^{(n)})$$

Goal

Challenges

- unobserved factors → spurious associations
- users → heterogeneous

Problem Setup

n heterogenous and independent users with one observation each - $\{v^{(i)}, a^{(i)}, y^{(i)}\}_{i=1}^n$ p-dimensional

Goal: Counterfactual Questions

For user $i \in [n]$, what would have happened if alternative treatments were assigned?

Suffices to learn $f(\mathbf{y} = \cdot \mid \mathbf{a} = \cdot, \mathbf{z}^{(i)}, \mathbf{v}^{(i)})$ for all $i \in [n]$, but each user may have different \mathbf{z}

Can we learn *n* different distributions with *one* sample per distribution?

Our Approach

We posit a joint exponential family distribution for $\mathbf{w} \triangleq (\mathbf{z}, \mathbf{v}, \mathbf{a}, \mathbf{y})$ $f(w) \propto \exp(\phi^{\top} w + w^{\top} \Phi w)$

$$f(\mathbf{y} \mid \mathbf{a}, \mathbf{z} = \mathbf{z^{(i)}}, \mathbf{v} = \mathbf{v^{(i)}}) \propto \exp\left(\left[\begin{array}{c} \boldsymbol{\phi}_{\mathbf{y}}^{\top} + 2\mathbf{z^{(i)}}^{\top}\boldsymbol{\Phi}_{\mathbf{z},\mathbf{y}} + 2\mathbf{v^{(i)}}^{\top}\boldsymbol{\Phi}_{\mathbf{v},\mathbf{y}} + 2\boldsymbol{a}^{\top}\boldsymbol{\Phi}_{a,\mathbf{y}} \end{array}\right] \mathbf{y} + \mathbf{y}^{\top}\boldsymbol{\Phi}_{\mathbf{y},\mathbf{y}} \mathbf{y}\right)$$
different for different users

n heterogeneous conditional distributions same exp. family but with diff. parameters

Inference Tasks

counterfactual User-level $-\theta^*(\mathbf{z}^{(i)})$ for all $i \in [n]$ 1. Parameters: distribution Population-level — Θ^*

counterfactual 2. Potential Outcomes: $\mu^{(i)} \triangleq \mathbf{E} \left[\mathbf{y}^{(i)}(\tilde{a}^{(i)}) | \mathbf{z} = \mathbf{z}^{(i)}, \mathbf{v} = \mathbf{v}^{(i)} \right]$ mean

Parameter Estimation

 Θ^* has sparse rows $\theta^{\star}(\mathbf{z}^{(i)}) \in \operatorname{set} \mathscr{B}$ Assum 2:

$$\|\Theta^{\star} - \widehat{\Theta}\|_{2,\infty} \leq \epsilon \qquad \text{when } n \geq O\left(\frac{p^2 \left(p + M_n(\epsilon^2)\right)}{\epsilon^4}\right)$$
 For all i , $\text{MSE}\left(\theta^{\star}(\mathbf{z}^{(i)}), \widehat{\theta}^{(i)}\right) \leq \max\left\{\epsilon^2, \frac{M(c)}{p}\right\} \text{ when } n \geq O\left(\frac{p^2 \left(pM(c) + M_n(\epsilon^2)\right)}{\epsilon^4}\right)$ metric entropy of \mathscr{B}
$$M_n(\epsilon) = nM(n\epsilon)$$

★ When $\mathcal{B} = s$ —sparse linear combinations of k known vectors, $M(c) = O(s \log(k))$ and $M_n(\epsilon) = O(\frac{s \log k}{\epsilon})$

Outcome Estimation

$$\hat{f}(y \mid \boldsymbol{a} = \tilde{\boldsymbol{a}}^{(i)}, \boldsymbol{z} = \boldsymbol{z}^{(i)}, \boldsymbol{v} = \boldsymbol{v}^{(i)}) \propto \exp\left(\left[\widehat{\boldsymbol{\theta}}(\boldsymbol{z}^{(i)}) + 2\boldsymbol{v}^{(i)\top}\widehat{\boldsymbol{\Phi}}_{v,y} + 2\tilde{\boldsymbol{a}}^{(i)\top}\widehat{\boldsymbol{\Phi}}_{a,y}\right]\boldsymbol{y} + \boldsymbol{y}^{\top}\widehat{\boldsymbol{\Phi}}_{y,y}\boldsymbol{y}\right)$$
For all i and any $\tilde{\boldsymbol{a}}^{(i)} \in \mathcal{A}$

For all i and any $\tilde{a}^{(i)} \in \mathcal{A}$,

$$MSE\left(\mu^{(i)}, \hat{\mu}^{(i)}\right) \le \epsilon^2 + \frac{M(c)}{p} \quad \text{when } n \ge O\left(\frac{p^2\left(pM(c) + M_n(\epsilon^2)\right)}{\epsilon^4}\right)$$

Application: Denoise User-wise Data

No systematically unobserved covariates

Noisy observed data = true data + measurement error $\Delta \mathbf{x}$

Assum 1: Only half users have error: $\Delta \mathbf{x}^{(i)} = \mathbf{0}$ for $i \in \{n/2, \dots, n\}$

Assum 2: Data has sparse error: $\|\Delta \mathbf{x}^{(i)}\|_0 \le s$ for $i \in \{1, \dots, n/2\}$

Goal: Estimate the true data

For all
$$i$$
, $\|\Delta \mathbf{x}^{(i)}, \widehat{\Delta \mathbf{x}^{(i)}}\|^2 \le \max\left\{\frac{\epsilon^2}{s}, \frac{s}{p}\right\} + \epsilon^2$ when $n \ge O\left(\frac{s^2p}{\epsilon^4}\right)$