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Causal Effect Estimation

Causal effect of a drug on cholesterol level from observational data
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P(cholesterol | do(drug)) ?
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Observational Data
Age Gender Blood Pressure Drug Cholesterol (0) | Cholesterol (1)
22 Male 145/95 0 @ﬁ@ ?
26 Female 135/80 0 Q,l,& ?
58 Female 130/70 1 ? @ﬁ@
2 ‘1L
50 Male 145/80 1 / v;v
24 Female 150/85 1 ? @ﬁ@

Challenge — Unobserved Confounding
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Exercise

Cholesterol

Simpson’s paradox: Which subsets of the observed features should be used?
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Problem Formulation

u : unobserved exogenous variables

X : observed features

t : observed binary treatment variable

y : observed outcome
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G : DAG over the set of vertices {u,X,?,y}

Valid adjustments

z is a valid adjustment set if P(y|do(t = 1)) =

Pearlian Framework
DAG knowledge

Given the complete knowledge of

be used to check whether z is
valid for adjustment

the DAG, graphical criteria could

E[P(y|z=2z1=1)]

Potential Outcomes

lgnorability

X satisfies ignorability

U

X is a valid adjustment.

How much of the DAG do we need to know?
To find the causal effect of ron y, i.e., P(y|do(t = 1))
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Can we significantly reduce the structural knowledge required
about the DAG and yet find valid adjustment sets?
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The knowledge of one causal parent of the treatment is
sufficient to find a class of valid adjustment sets!

Assumptions

Semi-Markovian model

1. The treatment ¢ has the outcome y as its only child.

2. 'The outcome y has no child.
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Back-door Criterion

A popular sufficient graphical criterion for finding valid adjustments

Under our assumptions, a set z satisfies the back-door criterion in & if

1. zblocks every path between 7 and y in & that contains an arrow into t.

Sets satisfying back-door: {x;,x,} and {x,}

Conditional Independence <= Back-door

* x,:an observed feature that is a direct causal parent of z.

» Consider any subset of the remaining observed features i.e., z C x\ {x,}.

» z satisfies the back-door criterion if and only if x, L y|z, .

* Subset Search:

Algorithms

=) Use a subset based search procedure that exploits conditional independence
(CI) testing to check our invariance criterion.

* [RM-based:

= Use a sub-sampling trick to leverage Invariant Risk Minimization (IRM) as a
scalable approximation for CI testing.

IHDP

A RCT studying cognitive test score of low-birth-weight, premature infants.
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Observational Setting

a — treatment/intervention , o
Z — user’s unobserved traits
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V,— user’s observed traits at time ¢

y — outcome

Panel Data Potential
Outcomes
OO ®O v
y(l) y» = y(D(a)
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y® = y@(a®)

y(n)
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y?( a®) 7

Challenges

1. unobserved factors — spurious associations
2. users — heterogeneous

3. each user — a single interaction trajectory
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engagement level engagement level

Simpson’s paradox

Problem Setup

observed outcomes

n heterogenous and independent users with one observation each - {v®,a®, y(i)}lf;l

i,

p—dimensional

Goal : Counterfactual Questions

For user i € [n], what would have happened if alternative treatments were assigned?

Estimate y (@) for a® e of?

Suffices to learn Ay = - |a = - ,2%,vY) for all i € [n], but each user may have different z

Can we learn n different distributions with one sample per distribution ?

Our Approach

We posit a joint exponential family distribution for w = (z,v,a,y)
Fow) exp(¢Tw + chbw)

fyla,z=z%v =vY) exp([ ¢, + 2z(’)T(I> ,+2OTD, +2aT<I>ay ]y +yT<I>y)y>

dlfferent for different users

n heterogeneous conditional distributions same exp. family but with diff. parameters

¢y +2z'@,,
I 0,0
Reparameterize
b, D > 0(2),0 7 units 28
1 0:").©
¢V’y ? q)a,y 4 q))’ay

Inference Tasks

User-level — 8*(z?) for alli € [n] counterfactual

1. Parameters:
distribution

Population-level — @*

: o . : counterfactual
2. Potential Outcomes: ;) 2 E|y“(@")|z =z, v = V(’)] ——

Parameter Estimation
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pool all n samples | -
oM .. H(n) ) Z Z eXp( - [gt(z) +2@th(z)] xt(l))
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Assum1: ©O* has sparse rows
Assum2:  0*(z") € set &
2 +M 2
1©* — © ||, <€ whennZO(p (p 4,,(6 )))
€

2 2
For all i, MSE(H*(Z(Z)) 0 (l)) < max { , M(c) } when s 0(1) (pM(C) ;I-Mn(e )) )
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metric entropy of %

M, (e) = nM(ne)

* When & = s—sparse linear combinations of kK known vectors,

M(c) = O(slog(k)) and M,(e) = O( Slogk)
&

Outcome Estimation

v(i), a®

Mean
estimation
engine

P o VT ~

9(1), ® ~(1)

fiyla=a?,z =279y =v9) exp( [ 0(z®) +2v(’°)T6v,y+2 a(i”&?a,y ]y +yT6y,yy)

Forall i and anya® € «,

2 2
MSE(;N’), A(i)) < &2 +m when 1 > O(P (pPM(c) + M, (e )))
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Application: Denoise User-wise Data

No systematically unobserved covariates

Noisy observed data = true data + measurement error
X X AX

Assum 1: Only half users have error: AX® = 0fori € {n/2,---,n}

Assum 2: Data has sparse error: ||Ax(i)||0 < sforie {l,--,n/2}

Goal: Estimate the true data

Forall i, ||Ax?, Ax® ||* < max {—,—} +¢e¢“ whenn > O —
S p €




