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Insurance Dataset



Sensitive Attribute

Lagrangian dual

 Prediction Loss    s.t.    Fairness Loss min ≤ ϵ

 max  Prediction Loss  +  Fairness Loss min λ≥0 λ ( −ϵ)



Uncertainty in Sensitive Attribute
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Age Location BMI Number of 
children Smoker Medical 

expenses

19 Southwest 27.9 0 Yes 16884

28 Southeast 33 3 No 4449

Gender

Female

Male

62 Southeast 26.29 0 Yes 27808
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 max  Prediction Loss  +  Fairness Loss min λ≥0 λ ( −ϵ)
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Sensitive Attribute

 max  Prediction Loss  +  Fairness Loss min λ≥0 λ ( −ϵ)



Insurance
Uncertainty — limited sensitive attribute



Communities and Crime
Task— predict density of violent crimes (Regression)

Uncertainty — unreliable sensitive attribute
Sensitive attribute — Race (Continuous)



Goal
Learn a fair model despite uncertain sensitive attribute data.
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FairnessPrediction

All training data

⋮

Training data with 
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Training data with 
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Sub-sample 𝒟(1) Sub-sample 𝒟(M)
All training data

For some  and , uniformly draw  each of size  from  with replacement. k ∈ [n] M ≥ 1 𝒟(1), ⋯, 𝒟(M) k 𝒟

      min max
λ≥0

Prediction Loss + λ (Fairness Loss(𝒟) − ϵ) + ∑
i∈[M]

λi (Fairness Loss(𝒟(i)) − ϵ)

A General Purpose Algorithm



      min max
λ≥0

Prediction Loss + λ (Fairness Loss(𝒟) − ϵ) + ∑
i∈[M]

λi (Fairness Loss(𝒟(i)) − ϵ)

A General Purpose Algorithm
 Bootstrap-M

 Prediction Loss    s.t.    Fairness Loss   

                s.t.    Fairness Loss    for all 

min (𝒟) ≤ ϵ

(𝒟(i)) ≤ ϵ i ∈ [M]



Insurance Dataset



Crime Dataset



•  :— -dimensional input 

•  :— 1-dimensional target 

•  :— 1-dimensional sensitive attribute 

•  and  :— known
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Gaussian Data

and  bvw ≜ Σ−1/2
v ΣvwΣ−1/2

wmax
a∈ℬ(0,1)

⟨a, byx⟩2
s.t ⟨a, bex⟩2 ≤ ϵ where a = bux

Quadratically 
Constrained 

Quadratic 
Program 
(QCQP)

Model the distribution of  as Gaussian(x, y, e, u)

 Prediction Loss    s.t.    Fairness Loss min ≤ ϵ
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Gaussian Data

and  bvw ≜ Σ−1/2
v ΣvwΣ−1/2

wmax
a∈ℬ(0,1)

⟨a, byx⟩2
s.t ⟨a, bex⟩2 ≤ ϵ where a = bux

Quadratically 
Constrained 

Quadratic 
Program 
(QCQP)

Model the distribution of  as Gaussian(x, y, e, u)

max
a∈ℬ(0,1)

⟨a, byx⟩2
s.t ⟨a, b̂ex⟩2 ≤ ϵ

Baseline

This does not guarantee fairness



Robust QCQP
Uncertainty in sensitive attributes

bvw ≜ Σ−1/2
v ΣvwΣ−1/2

w

max
a∈ℬ(0,1)

⟨a, byx⟩2
s.t ⟨a, b⟩2 ≤ ϵ for all b ∈ ℬ(b̂ex, Δ)

Δ
b̂ex ℬ(b̂ex, Δ)



bvw ≜ Σ−1/2
v ΣvwΣ−1/2

w

Robust QCQP
Relaxing the uncertainty

max
a∈ℬ(0,1)

⟨a, byx⟩2
s.t ⟨a, b(i)⟩2 ≤ ϵ for all i ∈ [3]

Δ
b̂ex


