Front-door Adjustment Beyond Markov Equivalence with Limited Graph Knowledge

Abhin Shah MIT

Karthikeyan Shanmugam Google Research

Murat Kocaoglu Purdue University

Causal Effect Estimation

Causal effect of a drug on cholesterol level from observational data

 $\mathbb{P}(\text{cholesterol} | do(\text{drug}))$?

Observational Data

Age	Gender	Blood Pressure	Drug	Cholesterol (0)	Cholesterol (1)
22	Male	145/95	0	olo	?
26	Female	135/80	0	* 1 *	?
58	Female	130/70	1	?	o Do
50	Male	145/80	1	?	11
24	Female	150/85	1	?	o Po
Observed features x		Treatment t	Outco	me v	

Causal Estimands with known graph

Back-door Criterion

A set **z** satisfies the back-door criterion if

- 1. all back-door paths between t and y are blocked by z (i.e., paths containing an arrow into t)
- 2. \mathbf{z} does not contain any descendant of t

$$\mathbb{P}(y \mid do(t=t)) = \sum_{\mathbf{z}} \mathbb{P}(y \mid t=t, \mathbf{z}=z) \mathbb{P}(\mathbf{z}=z)$$

Front-door Criterion

A set ${\bf z}$ satisfies the front-door criterion in ${\cal G}$ if

- 1. **z** blocks all directed paths from t to y in \mathcal{G}
- 2. all back-door paths between t and \mathbf{z} in \mathcal{G} are blocked
- 3. all back-door paths between z and y in \mathcal{G} are blocked by t

$$\mathbb{P}(y \mid do(t=t)) = \sum_{\mathbf{z}} \left(\sum_{t'} \mathbb{P}(y \mid t=t', \mathbf{z}=z) \mathbb{P}(t=t') \right) \mathbb{P}(\mathbf{z}=z \mid t=t)$$

How much of the DAG do we need to know?

To find the causal effect when there is a confounder between *t* and *y*

Assumptions

Semi-Markovian model

- 1. The outcome y is a descendant of the treatment t.
- 2. There is an unobserved confounder between the outcome *y* and the treatment *t*.

How to identify front-door-like sets using only partial structural information about post-treatment variables?

The knowledge of the children of the treatment is sufficient!

Causal Identifiability

- **b** : the set of all children of *t*.
- Consider any subset of the remaining observed features i.e., $\mathbf{z} \subseteq \mathbf{x} \setminus \{\mathbf{b}\}$.
- $\exists \mathbf{z}$ such that $\mathbf{b} \perp y \mid t, \mathbf{z} \implies \mathbb{P}(y \mid do(t = t))$ is identifiable from observational data

$$\mathbf{z} = (\mathbf{x}_3, \mathbf{x}_4) \text{ in } \mathcal{G}_{\text{toy}}$$

Generalized front-door criterion

• If **z** satisfying $\mathbf{b} \perp y \mid t$, **z** can be decomposed into $\mathbf{z}^{(o)} \subseteq \mathbf{z}$ and $\mathbf{z}^{(i)} = \mathbf{z} \setminus \mathbf{z}^{(o)}$ such that

$$\mathbf{z}^{(i)} \perp t$$
 and $\mathbf{z}^{(o)} \perp t \mid \mathbf{z}^{(i)}, \mathbf{b}$

then, \mathbf{z} and $\mathbf{s} \triangleq (\mathbf{b}, \mathbf{z}^{(i)})$ are generalized front-door sets, i.e.,

$$\mathbb{P}(y | do(t = t)) = \sum_{\mathbf{z}} \left(\sum_{t'} \mathbb{P}(y | t = t', \mathbf{z} = z) \mathbb{P}(t = t') \right) \mathbb{P}(\mathbf{z} = z | t = t)$$

$$= \sum_{\mathbf{s}} \left(\sum_{t'} \mathbb{P}(y | t = t', \mathbf{s} = s) \mathbb{P}(t = t') \right) \mathbb{P}(\mathbf{s} = s | t = t)$$

$$\mathbf{z}^{(i)} = \mathbf{x}_3 \text{ and } \mathbf{z}^{(o)} = \mathbf{x}_4 \text{ in } \mathcal{G}_{tov}$$

Relation to PAG-based algorithms

Graph \mathcal{G}_1 where our method applies

PAG corresponding to graphs \mathcal{G}_1 and \mathcal{G}_2

Graph \mathcal{G}_2 which is Markov equivalent to \mathcal{G}_1

IDP algorithm fails here!

Applicability to random graphs

- For p observed variables, let v_1, \dots, v_p denote a causal ordering.
- For $1 \le i < j \le p$, add $v_i \to v_j$ w.p. 0.5 if $j \le 2d$ and w.p d/(j-1) if j > 2d.
 - \implies d is the expected in-degree of variables v_{2d}, \dots, v_p .
- For $1 \le i < j \le p$, add $v_i \leftarrow \rightarrow v_j$ w.p. q/p.

Let $y = v_p$; t = any non-parent and non-grand parent ancestor of y; $\mathbf{b} = \text{all children of } t$

	p = 10			p = 15		
	d = 2	d = 3	d = 4	d = 2	d = 3	d = 4
q = 0.0	(43, 43)	(20, 20)	(21, 21)	(27, 26)	(9,9)	(4, 2)
q = 0.5	(23, 23)	(16, 16)	(7,7)	(18, 17)	(4, 3)	(0, 0)
q = 1.0	(6,6)	(4,4)	(5, 5)	(9, 9)	(10, 9)	(0, 0)

IDP gives 0 success out of 100 across for various p, d, and q

German Credit Dataset — Fairness application

Compute the total effect of the sensitive attribute t on the outcome y

 $y = \text{binary credit risk}; \quad t = \text{applicant's age (binarized)};$

 ${f b}$ = # of people financially dependent on the applicant, applicant's savings, applicant's job

Our method finds $\mathbf{z} = (\mathbf{z}^{(i)}, \mathbf{z}^{(o)})$ and results in Total effect_z = 0.0125 ± 0.0011 , and Total effect_s = 0.0105 ± 0.0018