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Abstract

Given an observational study with n independent but heterogeneous units, our goal is to
learn the counterfactual distribution for each unit using only one p-dimensional sample per
unit containing covariates, interventions, and outcomes. Specifically, we allow for unobserved
confounding that introduces statistical biases between interventions and outcomes as well as
exacerbates the heterogeneity across units. Modeling the conditional distribution of the outcomes
as an exponential family, we reduce learning the unit-level counterfactual distributions to learning
n exponential family distributions with heterogeneous parameters and only one sample per
distribution. We introduce a convex objective that pools all n samples to jointly learn all n
parameter vectors, and provide a unit-wise mean squared error bound that scales linearly with
the metric entropy of the parameter space. For example, when the parameters are s-sparse
linear combination of k known vectors, the error is O(s log k/p). En route, we derive sufficient
conditions for compactly supported distributions to satisfy the logarithmic Sobolev inequality.
As an application of the framework, our results enable consistent imputation of sparsely missing
covariates.

1 Introduction

We are interested in the problem of unit-level counterfactual inference owing to the increasing
importance of personalized decision-making in many domains. As a motivating example, consider an
observational dataset corresponding to an interaction between a recommender system and a user
over time. At each time, the user was exposed to a product based on observed demographic factors
as well as factors that are not observed in the dataset, e.g., user’s energy level (i.e., whether they’re
feeling energetic or tired). Additionally, at each time, the user’s engagement level, which could
have sequentially depended on the prior interaction in addition to the ongoing interaction, was also
recorded. Also, the system could have sequentially adapted its recommendation. Given such data
of many heterogeneous users (e.g., a movie recommender system for a streaming media platform),
we want to infer each user’s average engagement level if it were exposed to a different sequence of
products while the observed and the unobserved factors remain unchanged. This task is challenging
since: (a) the unobserved factors could give rise to spurious associations, (b) the users could be
heterogeneous in that they may have different responses to same sequence of products, and (c) each
user provides a single interaction trajectory.

More generally, to address problems of this kind, we consider an observational setting where a unit
undergoes multiple interventions (or treatments) denoted by a. We denote the outcomes of interest
by y, and allow the interventions a and the outcomes y to be confounded by observed covariates v
as well as unobserved covariates z. The graphical structure shown in Figure. 1(a) captures these
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(a) A generic model for our setting (b) A graphical model for sequential recommender system

Figure 1: Graphical models covered by our methodology. Directed arrows denote causation and
undirected arrows denote association. Thin arrows denote low-level causal links and thick arrows
denote high-level causal links, i.e., aggregated thin arrows. Our methodology does not assume
knowledge of low-level causal links and is applicable to any graphical model with high-level causal
links between variables as in panel (a). Panel (b) presents an example of a sequential recommender
system (consistent with the model in panel (a)) interacting with a user at 3 time points where
zt, vt, at, and yt denote the user’s unobserved energy levels, observed demographic factors, the
product exposed to the user, and the user’s engagement level, respectively, at time t. The left subplot
illustrates the high-level dependency between the variables while the right subplot expands on it for
time 1 and 2.

interactions and is at the heart of our problem. In the recommender system example above, a unit
corresponds to a user, a corresponds to the products recommended, y corresponds to the engagement
levels, v corresponds to the observed demographic factors, and z corresponds to the unobserved
energy levels (see Figure. 1(b)). We consider n heterogeneous and independent units indexed by
i ∈ [n] ≜ {1, · · · , n}, and assume access to one observation per unit with (v(i), a(i), y(i)) denoting
the realizations of (v, a, y) for unit i.

We operate within the Neyman-Rubin potential outcomes framework (Neyman, 1923; Rubin,
1974) and denote the potential outcome of unit i ∈ [n] under interventions a by y(i)(a). Given the
realizations

{
(v(i),a(i),y(i))

}n
i=1

, our goal is to answer counterfactual questions for these n units.
For example, what would the potential outcomes y(i)(ã(i)) for interventions ã(i) ̸= a(i) be, while the
observed and unobserved covariates remain unchanged? Under the graphical model in Figure. 1(a)
and the stable unit treatment value assumption (SUTVA), i.e., the potential outcomes of unit i are
not affected by the interventions at other units, learning unit-level counterfactual distributions is
equivalent to learning unit-level conditional distributions{

fy|a,z,v(y = ·|a = ·, z(i),v(i))
}n
i=1

. (1)

Here, the i-th distribution represents the conditional distribution for the outcomes y as a function of
the interventions a, while keeping the observed covariates v and the unobserved covariates z fixed at
the corresponding realizations for unit i, i.e., v(i) and z(i), respectively.

Such questions cannot be answered without structural assumptions due to two key challenges:
(a) unobserved confounding and (b) single observation per unit. First, the unobserved covariates z
introduce spurious statistical dependence between interventions and outcomes, termed unobserved
confounding, which results in biased estimates. Second, we only observe one realization, namely the
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outcomes y(i)(a(i)) under the interventions a(i), that is consistent with the unit-level conditional
distribution fy|a,z,v(y|a, z(i),v(i)). As a result, we need to learn n heterogeneous conditional
distributions while having access to only one sample from each of them.

In this work, we model the conditional distribution of the outcomes of interest conditioned
on the unobserved covariates, the observed covariates, the intervention as an exponential family
distribution motivated by the principle of maximum entropy.1 With this model structure, we show
that both the aforementioned challenges can be tackled. In particular, we show that the n unit-level
conditional distributions in (1) lead to n distributions from the same exponential family, albeit
with parameters that vary across units. The parameter corresponding to the ith unit, for brevity in
terminology denoted by γ(i) (defined later), captures the effect of z(i) and helps tackle the challenge
of unobserved confounding. However, the challenge still remains to learn n heterogeneous exponential
family distributions with one sample per distribution. This challenge has been addressed in two
specific scenarios in the literature: (a) if the unobserved confounding is identical across units, i.e.,
the parameters {γ(i)}ni=1 were all equal, then the challenge boils down to learning parameters of a
single exponential family distribution from n samples, which has been well-studied (cf. Shah et al.
(2021b) for an overview); (b) if v, a, and y take binary values and have pairwise interactions, then
the challenge boils down to learning parameters of an Ising model (a special sub-class of exponential
family defined later) with one sample. This specific challenge has been studied under restricted
settings: (i) where the dependencies between the variables are known (e.g., Kandiros et al. (2021);
Mukherjee et al. (2021)) and (ii) where a specific subset of the parameters are known (Dagan et al.,
2021). In this work, we consider a generalized setting where v, a, and y can be either discrete,
continuous, or both, and do not assume that the underlying dependencies or a specific subset of
parameters are known.

Summary of contributions This work introduces a method to learn unit-level counterfactual
distributions from observational studies, in the presence of unobserved confounding, with one
sample per unit, using exponential family modeling. For every unit i ∈ [n], we reduce learning its
counterfactual distribution to learning the unit-specific parameter γ(i) with access to one sample
(v(i),a(i),y(i)) from unit i. Here, {γ(1), · · · , γ(n)} are parameters of n different distributions from
the same exponential family. The specific technical contributions are as follows:

1. We introduce a convex (and strictly proper) loss function (Definition. 1) that pools the data{
(v(i),a(i),y(i))

}n
i=1

across all n samples to jointly learn all n parameters {γ(i)}ni=1.

2. For every unit i, we prove that the mean squared errors of our estimates of (a) γ(i) (Theorem. 1)
and (b) the expected potential outcomes under alternate interventions (Theorem. 2) scale
linearly with the metric entropy of the underlying parameter space. For instance, when γ(i)

is s-sparse linear combination of k known vectors (Corollary. 1), the error—just with one
sample—decays as O(s log k/p), where p is the dimension of the tuple (v, a, y).

3. We apply our method to impute missing covariates when they are sparse. Formally, we consider
a setup (with no systematically unobserved covariates) where the observed covariates are entirely
missing for some fixed fraction of the units. Specifically, for unit i with missing covariates,
only (a(i),y(i)) is observed. For every such unit, we show that our method can recover the

1Exponential family distributions are the maximum entropy distributions given linear constraints on distributions
such as specifying the moments (see Jaynes (1957)).
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missing covariates with the mean squared error decaying as O(p2v/p), where pv and p are the
dimensions of v and (v, a, y), respectively (Proposition. 2).

4. Methodologically, our work advances three threads: (a) learning Ising models (and their
extensions to discrete, continuous, or mixed variables) from a single sample, where we learn the
dependencies between variables, generalizing prior work Kandiros et al. (2021); Dagan et al.
(2021), (b) learning Markov random fields (a sub-class of exponential family) from multiple
independent but non-identical samples, generalizing prior work Vuffray et al. (2016, 2022);
Shah et al. (2021a), and (c) learning counterfactual outcomes with an exponential family model,
allowing each unit to have different unobserved covariates and providing unit-level guarantees
instead of average-level, generalizing Arkhangelsky and Imbens (2018).

5. In our analysis, we (a) derive sufficient conditions for a continuous random vector supported on
a compact set to satisfy the logarithmic Sobolev inequality (Proposition. F.1) and (b) provide
new concentration bounds for arbitrary functions of a continuous random vector that satisfies
the logarithmic Sobolev inequality (Proposition. F.2). These results may be of independent
interest.

Outline Section. 2 discusses background and related work. We discuss our formulation and
algorithm in Section. 3 and present their analysis in Section. 4. We develop an application of our
methodology to impute missing covariates in Section. 6. We sketch the proof of our main result
in Section. 7 with detailed proofs deferred to the appendices. We conclude with a discussion in
Section. 8.

Notation For any positive integer n, let [n] := {1, · · · , n}. For a deterministic sequence u1, · · · , un,
we let u := (u1, · · · , un). For a random sequence u1, · · · , un, we let u := (u1, · · · , un). For a vector
u ∈ Rp, we use ut to denote its tth coordinate and u−t ∈ Rp−1 to denote the vector after deleting
the tth coordinate. We denote the ℓ0, ℓp (p ≥ 1), and ℓ∞ norms of a vector v by ∥v∥0, ∥v∥p, and
∥v∥∞, respectively. For a matrix M ∈ Rp×p, we denote the element in tth row and uth column by
Mtu, the tth row by Mt, and the vector obtained after deleting Mtt from Mt by Mt,−t. Further, we
denote the matrix maximum norm by |||M|||max, the Frobenius norm by |||M|||F, the spectral norm
(operator 2-norm) by |||M|||op, the induced 1−norm (operator 1-norm) by |||M|||1, the induced ∞-norm
(operator ∞-norm) by |||M|||∞, and the (2,∞)-norm by |||M|||2,∞. Finally, for vectors û ∈ Rp and
ũ ∈ Rp, the mean squared error between û and ũ is defined as MSE(û, ũ) ≜ p−1

∑
t∈[p](ût − ũt)2.

2 Background and related work

This work builds on two vast bodies of literature: exponential family learning and unit-level
counterfactual inference with unobserved confounding. For a detailed literature overview of the
former, we refer the readers to Bresler (2015); Klivans and Meka (2017); Vuffray et al. (2022); Shah
et al. (2021a) (for a special sub-class, Markov random fields (MRFs)2) and Shah et al. (2021b) for
general exponential families. For an introduction to counterfactual inference, see the books Imbens
and Rubin (2015); Hernán and Robins (2020) for settings with no unobserved confounding and Pearl
(2009); Pearl et al. (2016) for settings with known causal mechanism (in the form of a causal graph).

2MRFs can be naturally represented as exponential family distributions with certain sparsity constraints on the
parameters via the principle of maximum entropy (Wainwright et al., 2008).
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Exponential family learning There is a series of works for learning Ising models, a special MRF
with binary variables and an instance of a pair-wise exponential family, from a single sample. Such
a model has two distinct sets of parameters capturing the contribution of nodes and edges in the
underlying undirected graph, referred to as the external field and the interaction matrix.3 Many
strategies exist for learning such a model when the interaction matrix is known up to a constant
and under varying assumptions on the external field; see, e.g., Chatterjee (2007); Bhattacharya and
Mukherjee (2018); Daskalakis et al. (2019); Ghosal and Mukherjee (2020); Kandiros et al. (2021);
Mukherjee et al. (2021). More recently, Dagan et al. (2021) provide guarantees for learning the
interaction matrix from a single sample when the external field is known. Kandiros et al. (2021) and
Mukherjee et al. (2021) extend the tools in Dagan et al. (2021) to learn the external field for an
Ising model with a known interaction matrix (up to a scalar multiple). Notably, all of these works
are based on the pseudo-likelihood estimation (Besag, 1975). Our work extends the techniques and
results from Dagan et al. (2021) to learn the external field from one sample of continuous variables
with an estimated interaction matrix.

Vuffray et al. (2016) introduced a novel M-estimation-based loss function for learning Ising
models from many independent and identically distributed samples. Vuffray et al. (2022) and
Shah et al. (2021a) generalize it to learn general MRFs with multi-ary discrete and continuous
variables, respectively. Ren et al. (2021) showed that this loss function has superior numerical
performance compared to the ones based on pseudo-likelihood. We contribute to this line of work by
generalizing that loss function further to learn MRFs with discrete, continuous, and mixed variables
with independent but not identically distributed samples.

For settings closer to our work, namely, exponential families with unobserved variables, the two
common modeling approaches include restricted Boltzmann machines (Bresler et al., 2019; Goel, 2020;
Bresler and Buhai, 2020) and latent variable Gaussian graphical models; see, e.g., Chandrasekaran
et al. (2012); Ma et al. (2013); Vinyes and Obozinski (2018); Wang et al. (2023). While the former
assumes a bipartite structure with edges only across observed and unobserved variables, the latter
imposes a Gaussian generative model. In this thread, most related to our set-up is the work by Taeb
et al. (2020) as they model the conditional distribution of the observed variables conditioned on the
unobserved variables as an exponential family similar to us. They provide empirically promising
results for recovering the underlying graph and the number of unobserved variables (assumed to be
small), albeit with limited theoretical guarantees. In contrast, here we provide parameter estimation
error in the presence of unobserved variables (notably, we cover all the models they considered).

Unit-level counterfactual inference Recent years have seen an active interest in developing
different strategies for unit-level inference with unobserved confounding.

For the settings with univariate outcomes for each unit, a common approach to deal with
unobserved confounding is the instrumental variable (IV) method (Imbens and Angrist, 1994) when
one has access to a variable—the IV—that induces changes in intervention assignment but has no
independent effect on outcomes allowing causal effect estimation. Recent works for IV methods with
unit-level inference include Hartford et al. (2017); Athey et al. (2019); Syrgkanis et al. (2019); Singh
et al. (2019); Xu et al. (2020); Semenova and Chernozhukov (2021); Wang et al. (2022). Another
approach for univariate outcomes, called causal sensitivity analysis (Rosenbaum and Rubin, 1983),
estimates the worst-case effect on the causal estimand as a function of the extent of unobserved

3E.g., in our model (defined later in (2)), ϕ and Φ correspond to the external field and the interaction matrix,
respectively.
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confounding in a given dataset under varying assumptions on the generative model. For such analysis
with unit-level guarantees, see, e.g., Yadlowsky et al. (2022); Kallus et al. (2019); Yin et al. (2022);
Jin et al. (2023); Jesson et al. (2021).

Closer to our work are those on panel or longitudinal data settings, where one observes multiple
outcomes for each unit. For linear panel data settings, a common approach is factor modeling, where
potential outcomes and interventions (binary or multi-ary) are assumed to be independent conditional
on some latent factors. See, e.g., difference-in-difference methods (Bertrand et al., 2004; Angrist
and Pischke, 2009), synthetic control (Abadie and Gardeazabal, 2003; Abadie et al., 2010), its
variants Arkhangelsky et al. (2021); Dwivedi et al. (2022b), and extensions to multi-ary interventions
in synthetic interventions (Agarwal et al., 2020) and sequential experiments (Dwivedi et al., 2022a).
For non-linear panel data settings, the most commonly used models include probit, logit, Poisson,
negative binomial, proportional hazard, and tobit models (see Fernández-Val and Weidner (2018) for
an overview) where some parametric model characterises the distribution of the outcomes conditional
on the unobserved covariates, the observed covariates, and the interventions. Notably, these works on
linear and non-linear panel data directly estimate effects (averaged over all observed and unobserved
covariates or unit-level for given observed and unobserved covariates) for finitely many interventions
when the intervention assignment has special structure, while we focus on learning the counterfactual
distributions while allowing for multi-ary discrete and continuous interventions without any special
structure. In this thread, our work is most related to Arkhangelsky and Imbens (2018), who also use
an exponential family to model the unit-wise distribution of the observed covariates and interventions
conditioned on the unobserved covariates. They connect this model to the commonly used fixed effects
model for the outcomes in latent factor modeling (Angrist and Pischke, 2009), and provide estimates
for the average treatment effect given multiple units with the same set of unobserved covariates. Our
work generalizes their set-up by allowing each unit to have a different set of unobserved covariates
and provides the first unit-level counterfactual inference guarantee with an exponential family model.

3 Problem formulation and algorithm

This section formalizes the problem, specifies our model, and defines the inference tasks of interest.

3.1 Underlying causal mechanism and counterfactual distributions

We consider a counterfactual inference task where units go through pa ≥ 1 interventions. For
every unit, we observe py ≥ 1 outcomes of interest. The interventions and the outcomes could be
confounded by pv ≥ 0 observed covariates as well as pz ≥ 0 unobserved covariates. Additionally, the
observed covariates and the unobserved covariates could be arbitrarily associated. We denote the
random vector associated with the interventions, the outcomes, the observed covariates, and the
unobserved covariates by a ≜ (a1, · · · , apa) ∈ Apa , y = (y1, · · · , ypy) ∈ Ypy , v ≜ (v1, · · · , vpv) ∈ Vpv ,
and z ≜ (z1, · · · , zpz) ∈ Zpz , respectively, where A,Y,V, and Z denote the support of interventions,
outcomes, observed covariates, and unobserved covariates, respectively. We allow these sets to contain
discrete, continuous, or mixed values.

Causal mechanism We summarize the causal relationship between the random vectors z, v, a,
and y in Figure. 1(a) where we denote the arbitrary association between z and v by a undirected
arrow, and the causal association between (i) (z, v) and a, (ii) (z, v) and y, and (iii) a and y by
directed arrows. More generally, we are interested in any setup consistent with the graphical model in
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Figure 2: A graphical model for a single unit in the network setting with 4 users; arrows have
same meaning as in Figure. 1. Here vt, zt, at, and yt denote user t’s observed factors, unobserved
factors, exposed product, and engagement level, respectively. The left plot illustrates the high-level
dependency between the variables of different users in the network, and the right plot expands on it
for (user 1, user 2) pair. Analogous dependencies exist for (user 1, user 3), (user 2, user 4), and (user
3, user 4) pairs.

Figure. 1(a). We assume access to n independent realizations indexed by i ∈ [n]: v(i), a(i), and y(i)

denote the realizations of v, a, and y for unit i, respectively. For every realized tuple (v(i),a(i),y(i)),
there is a corresponding realization z(i) of the unobserved covariates z that is unobserved. Next, we
discuss some examples covered by our framework.

Examples: sequential and network settings While Figure. 1(a) exhibits the high-level causal
links between z, v, a, and y, there could be complex low-level causal links between elements of these
vectors. We do not assume any knowledge of such low-level causal links. In Figure. 1(b), we provide
an instance of a sequential setting covered by our work where every unit’s (i) at+1 depends on at in
addition to vt+1 and z, and (ii) yt+1 depends on at and yt in addition to at+1, vt+1 and z. Another
classical example covered by our framework includes the network setting where a unit represents
a social network where users are linked to each other by interpersonal relationships as shown in
Figure. 2. Similar to the sequential recommender system, every user was exposed to a product based
on observed demographic factors as well as certain unobserved factors, and the user’s engagement
level was recorded. The engagement level of user t, i.e., yt, depended its observed demographic
factors vt, its unobserved factors zt, its exposed product at as well as on the product exposed to its
neighbor u, i.e., au. Further, yt could have been associated with yu.

Unit-level counterfactual distributions We denote the Neyman-Rubin potential outcomes
of unit i ∈ [n] under interventions a ∈ Apa by y(i)(a). We make the stable unit treatment value
assumption (SUTVA) (Rubin, 1980) for the observed outcome, i.e., y(i) = y(i)(a(i)) for all i ∈ [n]. For
independent units with the causal mechanism and SUTVA assumed here, the unit-level counterfactual
distributions are equivalent to certain unit-level conditional distributions as we now argue. Consider
unit i ∈ [n] and fix the observed covariates and the unobserved covariates at v(i) and z(i), respectively.
Then, let ỹ(i) be a realization of y when a = ã(i). We are interested in the distribution of the potential
outcomes of unit i for interventions ã(i), i.e., the distribution of y(i)(ã(i)) given z = z(i), v = v(i).
Under the causal framework considered here (see Figure. 1(a)), it is equivalent to the distribution
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of y(i)(ã(i)) given a = ã(i), z = z(i), v = v(i) since (z, v) satisfy ignorability (Pearl, 2009; Imbens
and Rubin, 2015), i.e., the potential outcomes are independent of the interventions given (z, v).
Further, under SUTVA, it is equivalent to the distribution of ỹ(i) given a = ã(i), z = z(i), v = v(i),
i.e., fy|a,z,v(y = ·|a = ã(i), z(i),v(i)). Therefore, our goal is to learn the n unit-level conditional
distributions in (1). Now, we proceed to the modeling details.

3.2 Exponential family modeling and its consequences

Let w ≜ (z, v, a, y) be the p̃-dimensional random vector obtained by concatenating z, v, a and y
where p̃ ≜ pz + pv + pa + py. For notational convenience, we start by modeling the joint probability
distribution fw as an exponential family and relax this model to the conditional distribution of the
outcomes in Section. 5.1. In particular, we parameterize fw with natural parameters ϕ ∈ Rp̃×1 and
Φ ∈ Rp̃×p̃, and natural statistics w and ww⊤ so that

fw(w;ϕ,Φ) ∝ exp
(
ϕ⊤w +w⊤Φw

)
, where w ≜ (z,v,a,y), (2)

and z ≜ (z1, · · · , zpz), v ≜ (v1, · · · , vpv), a ≜ (a1, · · · , apa), and y ≜ (y1, · · · , ypy) denote realizations
of z, v, a, and y, respectively. Without loss of generality, we can assume Φ to be a symmetric matrix.
Next, we show that with this modeling assumption, learning unit-level counterfactual distribution
can be reduced to learning a suitable exponential family model.

Under the exponential family in (2), the unit-level conditional distribution of y conditioned on
a = a, z = z, and v = v is an exponential family model with natural statistics y and yy⊤ and

fy|a,z,v(y|a, z,v)∝exp
([
ϕ(y)

⊤
+2z⊤Φ(z,y)+2v⊤Φ(v,y)+2a⊤Φ(a,y)

]
y+y⊤Φ(y,y)y

)
, (3)

where ϕ(y) ∈ Rp×1 is the component of ϕ corresponding to y and Φ(u,y) ∈ Rpu×py is the component
of Φ corresponding to u and y for all u ∈ {z, v, a, y}.4 We make two key observations: (a) the term
Φ(z,y)⊤z captures the effect of unobserved covariates z on fy|a,z,v(y= ·|a= ·, z,v) and (b) the task of
learning fy|a,z,v(y = ·|a = ·, z,v) in (3) as a function of a reduces to learning

(i) ϕ(y) + 2Φ(z,y)⊤z + 2Φ(v,y)⊤v, (ii) Φ(a,y), and (iii) Φ(y,y). (4)

That is, learning the unit-level conditional distribution for unit i is equivalent to learning

γ(i) =
{
ϕ(y) + 2Φ(z,y)⊤z(i) + 2Φ(v,y)⊤v(i),Φ(a,y),Φ(y,y)

}
, (5)

where the notation γ(i) is the same as in Section. 1. We note that, given a = a, z = z, and
v = v, y = a + z + v + η is one plausible data generating process (DGP) consistent with (3)
when the noise variable η has an exponential family distribution. More specifically, this DGP, with
η such that f(η) ∝ exp

(
ϕ(y)⊤η + η⊤Φ(y,y)η

)
, results in the conditional distribution in (3) with

Φ(z,y) = Φ(v,y) = Φ(a,y) = Φ(y,y).
Next, we argue that learning the three quantities in (4) is subsumed in learning the parameters

of the (unit-level) conditional distribution fx|z of the random vector x ≜ (v, a, y) conditioned on
z = z. Note that fx|z belongs to an exponential family with natural statistics x and xx⊤. For all

4The exponential family in (3) is same as the one considered in Taeb et al. (2020, Equation 1.3).
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u ∈ {v, a, y}, let ϕ(u) ∈ Rpu×1 be the component of ϕ corresponding to u, and Φ(z,u) ∈ Rpz×pu be the
component of Φ corresponding to z and u. Then fx|z can be parameterized as follows:

fx|z
(
x|z; θ(z),Θ

)
∝exp

(
[θ(z)]⊤x+x⊤Θx

)
,where θ(z) ≜

ϕ(v)+2Φ(z,v)⊤z

ϕ(a)+2Φ(z,a)⊤z

ϕ(y)+2Φ(z,y)⊤z

∈Rp×1, (6)

x ≜ (v,a,y), p ≜ pv + pa + py and Θ ∈ Rp×p denotes the component of Φ corresponding to x.
Given some estimates for θ(z) and Θ, using their appropriate components also yields an estimate of
the three quantities in (4) for any v = v. To summarize, the spurious associations or unobserved
confounding between a and y introduced due to unobserved z are fully captured by Φ(z,y)⊤z or
equivalently by θ(z); thereby, learning unit-level counterfactual distributions require us to learn these
unit-level parameters.

3.2.1 Reduced inference task and modeling constraints

Let fw(·;ϕ∗,Φ∗) denote the true data generating distribution of w in (2), and let fx|z
(
· |z ; θ⋆(z),Θ⋆

)
denote the true distribution of x conditioned on z = z in (6). Then, for all i ∈ [n], we note that the
realization x(i) ≜ (v(i),a(i),y(i)) is consistent with the conditional distribution fx|z

(
·|z(i); θ⋆(z(i)),Θ⋆

)
where we do not observe z(i). Our primary goal is to learn the n unit-level counterfactual distributions,
which as noted above simplifies to estimating the following parameters:

(i) Unit-level θ⋆(i) ≜ θ⋆(z(i)) for i ∈ [n], and (ii) Population-level Θ⋆. (7)

Our secondary goal is to estimate the expected potential outcomes for any given unit i (with
z = z(i), v = v(i)) and an alternate intervention ã(i):

µ(i)(ã(i)) ≜ E[y(i)(ã(i))|z = z(i), v = v(i)], (8)

where y(i)(ã(i)) denotes the potential outcomes for unit i ∈ [n] under interventions ã(i) ∈ Apa .
For ease of exposition, we consider bounded continuous sets V, A, and Y with V = A = Y ≜

X = [−xmax, xmax] for a given xmax. In Section. 5.3, we consider compact discrete and mixed sets.
Throughout this paper, it is convenient to further constrain the model as follows:

Assumption 1 (Bounded and sparse parameters). The true model parameters (7) satisfy

θ⋆(i) ∈ Λθ ≜
{
θ ∈ Rp×1 : ∥θ∥∞ ≤ α

}
for all i ∈ [n], (9)

and

Θ⋆ ∈ ΛΘ ≜
{
Θ ∈ Rp×p : Θ = Θ⊤, |||Θ|||max ≤ α, |||Θ|||∞ ≤ β

}
. (10)

While (9) bounds the unit-level parameters (a necessary condition for model identifiability
(Santhanam and Wainwright, 2012)), (10) bounds the ℓ1 norm of the interaction of each xt ∈ x with
every xu ∈ x in (6). As a result, Assumption. 1 implies that the exponential family in (6) corresponds
to MRFs (see Section. 2), also known as undirected graphical models (defined in Appendix. G). We
note that Assumption. 1 is standard in the literature on learning MRFs (Bresler, 2015; Vuffray et al.,
2016; Klivans and Meka, 2017; Vuffray et al., 2022; Shah et al., 2021a). We are now ready to state
our algorithm.

9



3.3 An efficient algorithm via a convex objective

We first describe our strategy to estimate the parameters in (7). Then, we use the estimated
parameters to estimate the expected potential outcomes in (8). We remark that for exponential
families considered here, maximum likelihood for parameter estimation is not computationally
tractable (Wainwright et al., 2008; Shah et al., 2021b). As a result, we resort to an alternative
objective function inspired by the convex loss functions used in Vuffray et al. (2016, 2022); Shah et al.
(2021a) as they do not depend on the partition function of the distribution. These loss functions
are designed in a specific way (see below for details): (i) the sufficient statistics of the conditional
distribution of a variable given all other variables are centered by adding appropriate constants,
(ii) the loss function is an empirical average of the sum of the inverses of all of these conditional
distributions (without the partition function) with centered sufficient statistics.

3.3.1 Parameter estimation

Our convex objective function jointly learns all the parameters of interest by pooling the observations
across all n units and exploiting the exponential family structure of v, a, and y conditioned on z = z
in (6), i.e., the objective explicitly utilizes the fact that the population-level parameter Θ⋆ is shared
across units. In particular, we use the following two steps.

Centering sufficient statistics of the conditional distribution of a variable Consider the
conditional distribution fxt|x−t,z of the random variable xt conditioned on x−t = x−t and z = z for
any t ∈ [p]:

fxt|x−t,z

(
xt|x−t, z; θt(z),Θt

)
∝ exp

([
θt(z) + 2Θ⊤

t,−tx−t
]
xt +Θttx

2
t

)
, (11)

where θt(z) is the tth element of θ(z), Θt is the tth row of Θ, Θtt is the tth element of Θt, and
Θt,−t ≜ Θt \ Θtt ∈ Rp−1 is the vector obtained after deleting Θtt from Θt. Then, the sufficient
statistics in (11), namely xt and x2t , are centered by subtracting their expected value with respect to
the uniform distribution on X resulting in

fxt|x−t,z

(
xt|x−t, z; θt(z),Θt

)
∝ exp

([
θt(z) + 2Θ⊤

t,−tx−t
]
xt +Θtt

(
x2t −

x2max

3

))
, (12)

as the integral of xt and x2t with respect to the uniform distribution on X is 0 and x2max/3, respectively.
As we see later (in Proposition. 1), this centering ensures that our loss function is a proper loss
function as well as leads to connections with the surrogate likelihood (Shah et al., 2021a, Proposition.
4.1). We emphasize that the term x2max/3 inside the exponent in (12) is vacuous (as it is a constant)
and the distribution in (12) is equivalent to the one in (11).

Constructing the loss function Next, the loss function (defined below) is desgined to be an
empirical average of the sum over t ∈ [p] of the inverse of the term in the right hand side of (12).

Definition 1 (Loss function). Given the samples {x(i)}i∈[n], the loss L : Rp×(n+p) → R is given by

L
(
Θ
)
=

1

n

∑
t∈[p]

∑
i∈[n]

exp

(
−
[
θ
(i)
t +2Θ⊤

t,−tx
(i)
−t
]
x
(i)
t −Θtt

(
[x

(i)
t ]2 − x2max

3

))
where Θ≜

Θ
⊤
1
...

Θ⊤
p

 , (13)
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and Θt≜
{
θ
(1)
t , · · · , θ(n)t ,Θt

}
for t ∈ [p].

Our estimate of Θ⋆ (defined analogous to Θ) is given by

Θ̂ ∈ argmin
Θ∈Λn

θ×ΛΘ

L
(
Θ
)
. (14)

We note (14) is a convex optimization problem, and a projected gradient descent algorithm (see
Appendix. A.2) returns an ϵ-optimal estimate with τ = O(p/ϵ) iterations5 where Θ̂ϵ is said to be
an ϵ-optimal estimate if L

(
Θ̂ϵ

)
≤ L

(
Θ̂
)
+ ϵ for any ϵ > 0. The loss function L admits a notable

property (see Appendix. A.1 for the proof).

Proposition 1 (Proper loss function). The loss function L is strictly proper, i.e., Θ⋆ =
argminΘ∈Λn

θ×ΛΘ
Ex|z

[
L
(
Θ
)]

.

Proposition. 1 shows that the solution of the idealized convex program minΘ∈Λn
θ×ΛΘ

Ex|z
[
L
(
Θ
)]

is unique and equal to Θ⋆. In this idealized convex program, conditioned on the realized values of
the unobserved covariates of the n units z(1), · · · , z(n), the loss function is averaged over all the
randomness in the observed covariates, the interventions, and the outcomes. In other words, for
every i ∈ [n], the idealized convex program has infinite samples from fx|z with unobserved covariates
z conditioned to be z(i). Thus, the convex program in (14) can be seen as a single sample version of
this idealized program, thereby providing an intuitive justification of our loss function (instead of
a maximum likelihood objective, which is not tractable here). As we show later in our proofs (see
Section. 7 for an overview), different partial averages on the RHS of (13) also admit useful properties
and are critical to our analyses.

We note that loss function in (13) is a generalization of the loss functions used in Vuffray et al.
(2016, 2022); Shah et al. (2021a). In particular, if the unobserved confounding is identical across units,
i.e., θ⋆(1) = · · · = θ⋆(n), then L

(
Θ
)

in (13) can be decomposed into p independent loss functions, one
for every t ∈ [p]. These decomposed loss functions are identical to the ones used in these prior works.

3.3.2 Causal estimate

Given the estimate Θ̂, our estimate of the expected potential outcome µ(i)(ã(i)) under an alternate
intervention ã(i) ∈ Apa (8) is derived as follows: First, we identify Φ̂(u,y) ∈ Rpu×py to be the
component of Θ̂ corresponding to u and y for all u ∈ {v, a, y} and θ̂(i,y) ∈ Rpy to be the component
of θ̂(i) corresponding to y. Next, we estimate the conditional distribution of y for unit i as a function
of the interventions a, while keeping v = v(i) and z = z(i) fixed as

f̂
(i)
y|a(y|a) ∝ exp

([
θ̂(i,y) + 2v(i)⊤Φ̂(v,y) + 2a⊤Φ̂(a,y)

]
y + y⊤Φ̂(y,y)y

)
. (15)

Finally, we estimate µ(i)(ã(i)) as the mean under the above conditional distribution, given by

µ̂(i)(ã(i)) ≜ E
f̂
(i)
y|a
[y|a = ã(i)], (16)

which can be computed by standard algorithms for estimating marginals of graphical models, e.g.,
via the junction tree algorithm (Wainwright et al., 2008) or message-passing algorithms.6

5This follows from (Bubeck et al., 2015, Theorem. 3.7) by noting that L(Θ) is O(p) smooth function of Θ.
6In general, estimating the marginals exactly is computationally hard for undirected graphical models. While the

junction tree algorithm works well for graphical models with small treewidth (Wainwright et al., 2008, Section. 2.5),
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4 Main results

In this section, we analyze our estimates. First, we provide our guarantee on estimating the unit-level
and the population-level parameters in Section. 4.1. Next, we provide our guarantee on estimating
the causal estimand of interest in Section. 4.2. Before stating our main results, we define a standard
notion of complexity of the set Λθ, namely metric entropy (defined below) that our guarantees rely
on.

Definition 2 (ε-covering number and metric entropy). Given a set V ⊂ Rp and a scalar ε > 0,
we use C(V, ε) to denote the ε-covering number of V with respect to ∥·∥1, i.e., C(V, ε) denotes
the minimum cardinality over all possible subsets U ⊂ V that satisfy V ⊂ ∪u∈UB(u; ε), where
B(u; ε) ≜ {v ∈ Rp : ∥u− v∥1 ≤ ε}. We let Mθ(ε) ≜ log C(Λθ, ε) denote the metric entropy of Λθ,
and Mθ,n(ε) ≜ nMθ(nε) denote a scaled version of it.

Next, we state two settings with upper bounds on the metric entropy, and we use them as running
examples to unpack our general results throughout this paper.

Example 1 (Linear combination). Consider a set Λθ containing vectors with bounded entries that
are also a linear combination of k known vectors in Rp collected as B ∈ Rp×k, i.e., Λθ = {Ba : a ∈
Rk, ∥Ba∥∞ ≤ α}. Then, Dagan et al. (2021, Lemma. 11) implies that Mθ(η) = O

(
k log

(
1 + α

η

))
.

Further, Mθ,n(η) = O
(
αk
η

)
.

Example 2 (Sparse linear combination). Consider a set Λθ containing vectors with bounded entries
that are also a s-sparse linear combination of k known vectors in Rp collected as B ∈ Rp×k, i.e.,
Λθ = {Ba : a ∈ Rk, ∥a∥0 ≤ s, ∥Ba∥∞ ≤ α}. Then Dagan et al. (2021, Corollary. 4) implies that
Mθ(η) = O

(
s log k log

(
1 + α

η

))
. Further, Mθ,n(η) = O

(αs log k
η

)
.

4.1 Guarantee on quality of parameter estimate

Our non-asymptotic guarantees use an assumption of a lower bound on the smallest eigenvalue of a
suitable set of autocorrelation matrices.

Assumption 2. For any z ∈ Zpz and t ∈ [p], let λmin(z, t) denote the smallest eigenvalue of
the matrix Ex|z

[
x̃ x̃⊤|z = z

]
where x̃ ≜

(
xt, 2x−txt, x2t − x2max/3

)
∈ Rp+1. We assume λmin ≜

minz∈Zpz ,t∈[p] λmin(z, t) is strictly positive.

We note that all eigenvalues of any autocorrelation matrix are non-negative implying λmin(z, t) ≥ 0
for all z ∈ Zpz , t ∈ [p]. Assumption. 2 requires λmin(z, t) > 0 for all z ∈ Zpz , t ∈ [p] and serves as a
sufficient condition to rule out certain singular distributions (Shah et al., 2021b, Section. 5).7 In
Appendix. B.2, we show that λmin = Ω(e−cβ) when Θ⋆

tt = 0 for all t ∈ [p] as in Ising model where
x2t = 1 for all t ∈ [p].

We are now ready to state our main result that characterizes a high probability bound on the
estimation error for the estimate Θ̂ computed via (14). To simplify the presentation, we use c and c′

to denote universal constants or constants that depend on the parameters α, xmax, and λmin and can
take a different value in each appearance.

e.g., for trees or chains as in hidden Markov models or state-space models, message-passing algorithms are the default
choice for computing approximate marginals for complex graphs, especially with cycles. However, message-passing
algorithms may induce additional approximations, which we do not discuss here.

7Essentially, we use this assumption to lower bound the variance of a non-constant random variable (Appendix. B.1).
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Theorem 1 (Guarantee on quality of parameter estimate). Suppose Assumptions. 1 and 2 hold. Fix
an ε > 0 and δ ∈ (0, 1), and define

R(ε, δ)≜max{cec′β
√
log(log p/δ)+Mθ(ce−c

′β), εγ} with γ≜ max
θ,θ∈Λθ

∥θ−θ∥1
∥θ−θ∥2

(17)

and

M̃θ,n(ε, δ)≜Mθ,n

(ε2
p

)
+pMθ

(
R2(ε, δ)

)
. (18)

Then, with probability at least 1− δ, the estimates Θ̂, θ̂(1), · · · , θ̂(n) defined in (14) satisfy

|||Θ̂−Θ⋆|||2,∞ ≤ ε when n ≥
cec

′βp2
(
p log p

δε2
+Mθ,n(ε

2)
)

ε4
(19)

and

max
i∈[n]
∥θ̂(i) − θ⋆(i)∥2 ≤ R

(
ε,
δ

n

)
when n ≥

cec
′βp4

(
p log np2

δε2
+ M̃θ,n

(
ε, δn

))
ε4

. (20)

We split the proof into two parts: First, we establish the bound (19) in Appendix. B, which we then
use to establish the bound (20) in Appendix. C.

Our guarantee in (19) provides a non-asymptotic error bound of order p2(p log p+Mθ,n(n
−1/2))

n1/4 (where
we treat β as a constant) for estimating Θ⋆ although the n samples have different unit-level parameters
{θ⋆(i)}ni=1. On the other hand, after squaring both sides and dividing by p, the guarantee (20) for the
unit-level parameters can be simplified as follows:8 whenever n ≥ c′ε−4p4(p log p2

δε2
+Mθ,n(ε

2/p) +
pMθ(c)), we have

MSE(θ̂(i), θ⋆(i))≤max
{
ε2,
Mθ(c)+log(log p

δ )

p

}
, (21)

where we use γ ≤ √p in (17) and treat β as a constant. For large n so that ε is small, this error
scales linearly with the metric entropy Mθ—the error becomes worse as the unit-level parameter set
Λθ becomes more complex.

The next corollary (stated without proof) provides a formal version of the population-level
guarantee in (19) and the unit-level guarantee in (21) for the two examples discussed earlier. We
treat β as a constant and note that the dependence is exponential as in Theorem. 1.

Corollary 1 (Consequences for examples). Suppose Assumptions. 1 and 2 hold. Then, for any fixed
ε > 0 and δ ∈ (0, 1), the following results hold with probability at least 1− δ.

(a) Linear combination: If Λθ is as in Example. 1, then for all i ∈ [n],

|||Θ̂−Θ⋆|||2,∞≤ε for n≥
cp2
(
p log p

δε2
+ k
ε2

)
ε4

MSE(θ̂(i), θ⋆(i))≤max
{
ε2,

c
(
k+log(log p

δ )
)

p

}
for n≥

cp5
(
log p2

δε2
+k+ k

ε2

)
ε4

.

8We replace δ/n in (20) by δ as we do not require a union bound over i ∈ [n] for unit-wise guarantees.
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(b) Sparse linear combination: If Λθ is as in Example. 2, then for all i ∈ [n],

|||Θ̂−Θ⋆|||2,∞≤ε for n≥
cp2
(
p log p

δε2
+ s log k

ε2

)
ε4

MSE(θ̂(i), θ⋆(i))≤max
{
ε2,
c
(
s log k+log(log p

δ )
)

p

}
for n≥

cp5
(
log p2

δε2
+s log k+ s log k

ε2

)
ε4

.

Corollary. 1 states that, as long as n is polynomially large in p, our strategy learns the unit-level
parameters (on average in terms of mean square error across coordinates) for each user if p is large
compared to either the number of vectors k (Example. 1) or the sparsity parameter s (Example. 2).

Sharpness of guarantees and generalization of prior results The exponential dependence on
β in Theorem. 1 is unavoidable given the lower bounds for learning exponential families even with
i.i.d. samples (Santhanam and Wainwright, 2012). Regarding the dependence on error tolerance ε,
prior works with suitable analogs of our loss function provide two different error scaling: (i) 1/ε4 in
Vuffray et al. (2022); Shah et al. (2021a,b) and (ii) 1/ε2 in Vuffray et al. (2016) and Shah et al. (2023).
The works in category (ii) use techniques from Negahban et al. (2012), and it remains an interesting
future direction to see whether similar ideas could be used to sharpen the error scaling of 1/ε4 to
the parametric rate of 1/ε2 in Theorem. 1. We note that improving the dependence on ε in (19)
improves the dependence on ε as well as p in (20). In the special case of equal unit-level parameters
(θ⋆(1) = · · · = θ⋆(n)), the analysis in Appendix. B to establish the bound (19) can be modified to
recover (up to constants) prior guarantee (Shah et al., 2021a, Lemma. 9.1) on learning exponential
family from n i.i.d. samples. Further, the guarantee (20) recovers the prior guarantee (Kandiros
et al., 2021, Theorem. 6) as a special case where the authors consider learning an Ising model from
one sample when the population-level parameter is known up to a scaling factor.

4.2 Guarantee on quality of outcome estimate

Our non-asymptotic guarantee on outcome estimate assumes that the following matrices are suitably
stable under small perturbation in the parameters: (i) the covariance matrix of y conditioned on a, z,
and v and (ii) the cross-covariance matrix of y and yty conditioned on a, z, and v for all t ∈ [py].

Assumption 3. For any set B containing θ,Θ, there exists a constant C(B) such that

sup
θ,Θ∈B

max
{
|||Covθ,Θ(y, y|a, z,v)|||op, max

t∈[py ]
|||Covθ,Θ(y, yty|a, z,v)|||op

}
≤ C(B), (22)

almost surely. The expectation in (22) is with respect to the distribution of y conditioned on a = a,
z = z, and v = v which is fully parameterized by θ and Θ, and can be obtained from (6) after
replacing θ(z) by θ.

In Appendix. D.1, we show that C(B) is a constant for a class of distributions. We note that this
assumption is common in the literature on learning Gaussian graphical models to rule out singular
distributions (Won and Kim, 2006; Zhou et al., 2011; Ma and Michailidis, 2016).

We are now ready to state our guarantee for the estimate µ̂(i)(ã(i)) (see (16)) of the expected
potential outcomes for any unit i ∈ [n] under an alternate intervention ã(i) ∈ Apa . We assume
pv = pa = py for brevity. See the proof in Appendix. D where we also state a more general result.
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Theorem 2 (Guarantee on quality of outcome estimate). Suppose Assumptions. 1 to 3 hold. Then
for any fixed ε > 0 and δ ∈ (0, 1), the estimates {µ̂(i)(ã(i))}ni=1 defined in (16) for any {ã(i) ∈ Apa}ni=1

satisfy

max
i∈[n]

∥µ(i)(ã(i))−µ̂(i)(ã(i))∥2
C(Bi)

≤R
(
ε,
δ

n

)
+pε for n≥

cec
′βp4
(
p log np2

δε2
+M̃θ,n(ε,

δ
n)
)

ε4
, (23)

with probability at least 1− δ, where R(ε, δ) was defined in (17), M̃θ,n(ε, δ) was defined in (18), C(B)
was defined in (22), and

Bi ≜
{
θ ∈ Λθ : ∥θ−θ⋆(i)∥2 ≤ R

(
ε,
δ

n

)}
×
{
Θ ∈ ΛΘ : max

t∈[p]
∥Θt−Θ⋆

t ∥2 ≤ ε
}
.

Repeating the algebra as in (21) and treating C(Bi) as a constant, the bound (23) yields the
following simplified bound for the MSE of our mean outcome estimate µ(i)(ã(i)) for unit i ∈ [n] under
treatment ã(i) ∈ Apa : whenever n ≥ c′ε−4p4(p log p2

δε2
+Mθ,n(ε

2/p) + pMθ(c)), we have

MSE(µ(i)(ã(i)), µ̂(i)(ã(i)))≤ε2+
Mθ(c)+log(log p

δ )

p
.

This bound is of the same order as in (21) and can be formalized for the two examples (Examples. 1
and 2) by deriving a suitable analog of Corollary. 1. In a nutshell, in both settings, the unit-level
expected potential outcomes can be estimated well when the total number of units n is large and the
observations for each unit are high dimensional compared to the number of vectors k in Example. 1
or the sparsity parameter s in Example. 2. We omit a formal statement for brevity.

Finally, we also note that as in Theorem. 1, the exponential dependence on β is expected to be
unavoidable due to the principle of conjugate duality (Wainwright et al., 2008), i.e., the existence
of a unique mapping from the parameters to the means and vice versa for the exponential family.
Moreover, as in the discussion after Corollary. 1, the sharpness of the rate of 1/ε4 is left for future
work. Improving the dependency on ε in (23) would also improve the dependency on p.

5 Possible extensions

We now discuss how to extend our theoretical results with various relaxations of the exponential
family modeling.

5.1 Modeling only the conditional distribution as exponential family

Our framework and analysis can be extended to the setting where, instead of the joint distribution
fw of w = (z, v, a, y), we model only the conditional distribution fy|a,z,v of y conditioned on a, z, and
v as an exponential family. Note that when the joint distribution fw is an exponential family, the
conditional distribution fy|a,z,v is also an exponential family, however a vice versa implication does
not hold so that the setting considered here is a strict generalization of our previous setting. In fact,
the conditional distribution fy|a,z,v being an exponential family puts no restrictions on the marginal
distribution fz,v,a of the unobserved covariates, the observed covariates, and the interventions as is
the case with non-linear panel data models (Section. 2).
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To estimate the expected potential outcomes µ(i)(ã(i)) in (8) for any given unit i and any alternate
intervention ã(i), it suffices to estimate the conditional distribution of fy|a,z,v(·|v = a, v = v(i)z = z(i))

y for unit i as a function of the intervention a (as in (15)). This task is equivalent to estimating γ(i)

in (5) under the exponential family models in (2) or (3).
In Section. 3.2, under the exponential family in (2), we argued (for analytical convenience) that

learning γ(i) is subsumed in learning the parameters corresponding to the conditional distribution
fx|z of x = (v, a, y) conditioned on z (which also belongs to an exponential family with linear and
quadratic interactions) as in (6). Then, we set the goal of estimating the parameters in (7) and
designed a loss function to do so. The loss function depended on the conditional distribution fxt|x−t,z

(11) of the random variable xt conditioned on x−t = x−t and z = z for every t ∈ [p].
Under the exponential family in (3), we focus on directly learning the components of (7) relevant

to learning γ(i), i.e.,

θ⋆t (z
(i)) = ϕ⋆(y)+2Φ⋆(z,y)⊤z(i) ∈ Rpy×1, for all t ∈ {pv + pa + 1, · · · , pv + pa + py} (24)

Θ⋆
t = (Φ⋆(v,y),Φ⋆(a,y),Φ⋆(y,y)) ∈ Rp×1 for all t ∈ {pv + pa + 1, · · · , pv + pa + py}. (25)

We note that the conditional distribution fyt|y−t,v,a,z of the random variable yt conditioned on
y−t = y−t, v = v, a = a, and z = z for every t ∈ [py] is consistent with the conditional distribution
fxt′ |x−t′ ,z

in (11) for every t′ ∈ {pv+pa+1, · · · , pv+pa+py}. As a result, we can adapt the loss function
in (13) to learn the parameters in (24) and (25) by summing over t ∈ {pv + pa + 1, · · · , pv + pa + py}
instead of t ∈ [p]. Consequently, the guarantees in Section. 4 continue to hold with p replaced by py.

5.2 Higher order terms in the conditional exponential family

In Section. 5.1, we described how our framework and results apply when only the conditional
distribution fy|a,z,v is modeled as the exponential family distribution in (3) where the term inside the
exponent is linear in (z, v, a) and quadratic in y. We now describe how our framework and results are
applicable when the conditional distribution fy|a,z,v is modeled as the following exponential family
distribution

fy|a,z,v(y|a, z,v)∝ exp
(
qΦ(v,a,y)

)
exp

(
2z⊤Φ(z,y)y

)
, (26)

where qΦ(v,a,y) is some bounded degree polynomial in (v,a,y) parameterized by Φ, i.e., the term
inside the exponent is linear in z and arbitrary bounded degree polynomial in (v, a, y). We note that
every term in qΦ(v,a,y) needs to depend on y for it to contribute to fy|a,z,v in (26). For convenience,
hereon, we ignore any dependence on v, and abuse notation to let qΦ(a,y) = qΦ(v,a,y). Then, in
(3), qΦ(a,y) was a polynomial of degree 2 , i.e.,

qΦ(a,y) = q
(2)
Φ (a,y) ≜ Sum

(
ϕ(y) ⊙ y + 2Φ(a,y) ⊙

(
a⊗ y

)
+Φ(y,y) ⊙

(
y ⊗ y

))
,

where ⊙ denotes the Hadamard product, ⊗ denotes the Kronecker product, Φ = (ϕ(y),Φ(a,y), Φ(y,y))
with Φ(y,y) being symmetric, and Sum(s1 + · · ·+ sh) ∈ R sums, over all i ∈ [h], all the entries of si
which could be a real number/vector/matrix/tensor. To explain how the loss function in (13) needs
to be modified for general qΦ(a,y), we consider a polynomial of degree 3:

qΦ(a,y) = q
(2)
Φ (a,y) + Sum

( ∑
(u1,u2)∈{(a,a),(a,y),(y,y)}

cu1,u2 · Φ(u1,u2,y) ⊙
(
u1 ⊗ u2 ⊗ y

))
,
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where ca,a = ca,y = 3, cy,y = 1 are constants chosen for consistency, and Φ(u1,u2,y) ∈ Rpu1×pu2×py is
symmetric with respect to indices that are repeated for every (u1, u2) ∈ {(a, a), (a, y), (y, y)}. We
illustrate the two steps from Section. 3.3.1 below.

Centering sufficient statistics of the conditional distribution of a variable The conditional
distribution fyt|y−t,a,z of the random variable yt conditioned on y−t = y−t, a = a, and z = z for every
t ∈ [py] is given by

fyt|y−t,a,z

(
yt|y−t,a, z

)
∝ exp

(
Sum
([
ϕt(z) +

∑
u∈{y−t,a}

2Φ(u,yt) ⊙ u+
∑

(u1,u2)∈{(a,a),(a,y−t),(y−t,y−t)}

cu1,u2Φ
(u1,u2,yt) ⊙

(
u1 ⊗ u2

)]
yt

+
[
Φ(yt,yt) +

∑
u∈{y−t,a}

3Φ(u,yt,yt) ⊙ u
](
y2t −

x2max

3

)
+Φ(yt,yt,yt)y3t

))
,

where ϕt(z) ≜ ϕ(yt) + 2Φ(z,yt) ⊙ z, cy−t,y−t = 3, and ca,y−t = 6. Let Φt denote the concatenation of
all the remaining parameters. As in (12), the term x2max/3 inside the exponent is vacuous and centers
the sufficient statistics y2t . The other sufficient statistics, i.e., xt and x3t , are naturally centered as
their integrals with respect to the uniform distribution on X are both zeros.

Constructing the loss function Now, it is easy to see that the corresponding loss L is given by

L =
1

n

∑
t∈[py ]

∑
i∈[n]

exp

(
− Sum

([
ϕ
(i)
t +

∑
u∈{y−t,a}

2Φ(u,yt) ⊙ u(i) +
∑

(u1,u2)∈{(a,a),(a,y−t),(y−t,y−t)}

cu1,u2Φ
(u1,u2,yt) ⊙

(
u
(i)
1 ⊗ u

(i)
2

)]
y
(i)
t

+
[
Φ(yt,yt) +

∑
u∈{y−t,a}

3Φ(u,yt,yt) ⊙ u(i)
]([

y
(i)
t

]2 − x2max

3

)
+Φ(yt,yt,yt)

[
y
(i)
t

]3))
,

and minimizing this convex loss results in the estimates of {ϕ(i)t }i∈[n] and {Φt}t∈py . Consequently,
the guarantees in Section. 4 continue to hold with p replaced by py as long as Assumptions. 1 to 3
are appropriately generalized.

Tilting the base distribution We note that the exponential family in (3) can be rewritten as

fy|a,z,v(y|a, z,v)∝ exp
(
2z⊤Φ(z,y)y

)
exp

(
2v⊤Φ(v,y)y

)
exp

(
2a⊤Φ(a,y)y

)
exp

(
ϕ(y)

⊤
y + y⊤Φ(y,y)y

)
,

where exp
(
ϕ(y)

⊤
y + y⊤Φ(y,y)y

)
stands for a base distribution on y which is exponentially tilted by

z, v, and a, i.e., by exp
(
2z⊤Φ(z,y)y

)
, exp

(
2v⊤Φ(v,y)y

)
, and exp

(
2a⊤Φ(a,y)y

)
, respectively. Then,

generalizing the exponential family in (3) to the one in (26) is equivalent to saying that our approach
and results continue to apply when (a) the base distribution on y is an exponential family distribution
where the term inside the exponent is arbitrary bounded degree polynomial (instead of quadratic)
and (b) the exponent of the exponential tilting of this base distribution by (v, a) is arbitrary bounded
degree polynomial (instead of linear).

5.3 Discrete and mixed variables

In Section. 3.2, we described how our framework and results are applicable when the support of v, a,
and y are bounded continuous sets, i.e., V = A = Y = [−xmax, xmax]. In Section. 5.1, we showed that
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it suffices to only model the conditional distribution fy|a,z,v as an exponential family distribution
implying that we do not need any restrictions on the support of v and a. Now, we describe how to
adapt our loss function when y = (y1, · · · , ypy) ∈ Y1× · · · ×Ypy where Yt is either a discrete compact
set or a continuous compact set for t ∈ [py].

We note that the conditional distribution fyt|y−t,v,a,z of the random variable yt conditioned on
y−t = y−t, v = v, a = a, and z = z for every t ∈ [py] is still consistent with the conditional
distribution fxt′ |x−t′ ,z

in (11) for every t′ ∈ {pv + pa + 1, · · · , pv + pa + py}. However, the constants
used to center the sufficient statistics in (12) may change. More precisely, for any t ∈ [p], the
sufficient statistics xt and x2t are centered by subtracting EUt

[
xt
]

and EUt

[
x2t
]
, respectively where Ut

denotes the uniform distribution supported over Yt. Consequently, the loss function in (13) as well
as Assumption. 2 can be adapted, and the guarantees in Section. 4 continue to hold.

6 Application: Imputing missing covariates

Consider a setting with no systematically unobserved covariates z; instead, elements of (v, a, y) are
missing or have measurement error for some fraction of the units. Our goal is to impute these missing
values or denoise the measurement error in the observed values.

Problem setup For the ease of exposition, we assume the observed covariates v can have
measurement error9 but the interventions and the outcomes do not have any measurement error.
More concretely, for every unit i ∈ [n], along with the interventions a(i) and the outcomes y(i), we
observe v(i) = v(i) +∆v(i) instead of true covariates v(i) where ∆v(i) denotes (unobserved) bounded
measurement error. We assume that a certain number of units (known to us) have no measurement
error: say, ∆v(i) = 0 for all i ∈ {n/2 + 1, · · · , n}.

Questions of interest Besides counterfactual estimates, our goal is to estimate ∆v(i) for units
with measurement error.

6.1 A theoretical guarantee

Our methodology can be applied to estimate these measurement errors when the joint distribution
of the true covariates v ∈ X pv , the interventions a ∈ X pa , and the observed outcomes y ∈ X py can
be modeled as an exponential family, parameterized by a vector ϕ ∈ Rp and a symmetric matrix
Φ ∈ Rp×p where p ≜ pv + pa + py, i.e., with w ≜ (v, a, y)

fw(w;ϕ,Φ) ∝ exp
(
ϕ⊤w +w⊤Φw

)
, where w ≜ (v,a,y), (27)

and v ≜ (v1, · · · , vpv), a ≜ (a1, · · · , apa), and y ≜ (y1, · · · , ypy) denote realizations of v, a, and y,
respectively. To estimate the counterfactual distribution, we decompose v into v and ∆v, and obtain
the distribution of the observed quantities x ≜ (v, a, y) conditioned on ∆v = ∆v as follows (see
Appendix. E for details)

fx|∆v

(
x|∆v; θ(∆v),Θ

)
∝exp

(
[θ(∆v)]⊤x+x⊤Θx

)
where θ(∆v)≜

ϕ(v)−2Φ(v,v)⊤∆v

ϕ(a)−2Φ(v,a)⊤∆v

ϕ(y)−2Φ(v,y)⊤∆v

, (28)

9Our analysis remains the same when observed covariates v are missing instead of having measurement error.
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x ≜ (v,a,y), Θ ≜ Φ, and v, a, and y denote realizations of v, a, and y, respectively. As in
Section. 3.2, to estimate the counterfactual distribution, it suffices to learn θ(∆v) ∈ Rp×1 and
Θ ∈ Rp×p.

Let fw(·;ϕ⋆,Φ⋆) denote the true data generating distribution of w in (27) and let fx|∆v

(
·

|∆v; θ⋆(∆v),Θ⋆
)

denote the true distribution of x conditioned on ∆v = ∆v. We assume (a)
max {∥∆v∥∞ , ∥ϕ⋆∥∞ , |||Φ⋆|||max} ≤ α and (b) |||Φ⋆|||∞ ≤ β analogous to Assumption. 1 where the
row-wise ℓ1 sparsity in (b) is assumed to be induced by row-wise ℓ0 sparsity, i.e., ∥Φ⋆t ∥0 ≤ β/α for
all t ∈ [p]. Then, given realizations {x(i)}ni=1 consistent with fx|∆v

(
· |∆v(i); θ⋆(∆v(i)),Θ⋆

)
, first, we

estimate the parameters ϕ⋆ and Φ⋆ = Θ⋆ using the realizations for units {n/2 + 1, · · · , n}. Next,
we exploit the structure in the problem to show that θ⋆(i) ≜ θ⋆(∆v(i)) can be written as a linear
combination of known vectors with some error, for every unit i ∈ {1, · · · , n/2}. Then, we use (14) to
estimate {θ⋆(i)}ni=1 and obtain estimates of {∆v(i)}ni=1 as by-products. In particular, the estimate
of the coefficients associated with the aforementioned linear combination for θ⋆(i) turn out to be
our estimate of the measurement error ∆v(i) for every i ∈ {1, · · · , n/2}. For i ∈ {n/2 + 1, · · · , n},
estimating θ⋆(i) and ∆v(i) is straightforward since θ⋆(i) = ϕ⋆ and ∆v(i) = 0. We provide our guarantee
on estimating Θ⋆, θ⋆(i) for i ∈ [n], and ∆v(i) for i ∈ [n] below with a proof in Appendix. E.

Proposition 2 (Impute missing covariates). Suppose the eigenvalues of B⊤B are lower bounded
by κp for some κ > 0 where B≜

[
ϕ⋆,−2Φ⋆1, · · · ,−2Φ⋆pv

]
∈Rp×(pv+1). Then, for any fixed ε1 > 0 and

δ ∈ (0, 1), there exists estimates Θ̂ and
{
θ̂(i)
}n
i=1

such that, with probability at least 1− δ,

|||Θ̂−Θ⋆|||2,∞ ≤ε1 when n ≥
cec

′β log p√
δ

ε21
,

and

max
i∈[n]

MSE(θ̂(i),θ⋆(i)) ≤max
{
ε21,

cec
′β
(
pv+log(log np

δ )
)

p

}
when n ≥

cec
′β
(
log

√
np√
δ
+pv

)
ε21

.

Further, for any fixed ε2 > 0, if ε2 ≤ 1
8

√
p

pv+1 , there exist estimates
{
∆̂v

(i)}n
i=1

such that,

max
i∈[n]
∥∆̂v

(i)
−∆v(i)∥22 ≤ max

{ c1ε22κ
pv + 1

,
cec

′β
(
pv+log(log np

δ )
)

pκ

}
+ε22κ,

with probability at least 1− δ, whenever n ≥ cec′βκ−2ε−2
2 (pv+1)

(
log

√
np√
δ
+ pv

)
.

The above guarantees can be simplified as follows by treating β and κ as constants as well as
ignoring the constants, and the logarithmic factors in n and δ (denoted by ≾ and ≿): for any ε1 > 0

and 1
8

√
p

pv+1 ≥ ε2 > 0

|||Θ̂−Θ⋆|||2,∞ ≤ ε1 when n ≿
log p

ε21
, (29)

max
i∈[n]

MSE(θ̂(i), θ⋆(i)) ≾ max
{
ε21,

pv
p

}
when n ≿

log p+ pv
ε21

, (30)
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and

max
i∈[n]
∥∆̂v

(i)
−∆v(i)∥22 ≾ max

{ε22
pv
,
pv
p

}
+ ε22 when n ≿

pv(log p+ pv)

ε22
. (31)

For large n, whenever, max
{
ε21,

pv
p

}
= pv

p and max
{ ε22
pv
, pvp
}
= pv

p , the guarantees in (30) and (31)
can be written as

max
i∈[n]

MSE(θ̂(i), θ⋆(i)) ≾
pv
p

when n ≿
p log p

pv
, (32)

and

max
i∈[n]
∥∆̂v

(i)
−∆v(i)∥22 ≾

p2v
p

when n ≿
p log p

pv
. (33)

Remark The measurement errors can be recovered well as long as enough units with no measurement
error are observed (i.e., n/2 is large) and the observation per unit is high dimensional (i.e., p is large
compared to p2v). We note that the quadratic dependence (on pv) in (33) arises because of the error
in expressing θ⋆(i) as a linear combination of known vectors. In contrast, we get a linear dependence
(on k) in Corollary. 1(a) where there is no error in expressing θ⋆(i) as a linear combination of known
vectors (via Example. 1).

6.2 Simulations

We now present some simulation results to empirically evaluate the error scaling of our parameter
estimates with three key aspects of the application above: number of units n, dimension p, and
dimension pv of covariates with measurement error.

Data generation We choose X = [−1, 1] and pa = py = (p−pv)/2. The true joint distribution (27)
of w ≜ (v, a, y) is set as a truncated Gaussian distribution with the parameters ϕ⋆ = 1 ∈ Rp and a
positive definite Φ⋆ ∈ Rp×p generated using sklearn package (Pedregosa et al., 2011) such that α = 6,
β = 4, and κ = 0.15. We draw n i.i.d. samples {w(i)}ni=1 from this true distrbution using tmvtnorm
package (Wilhelm and Manjunath, 2010). Next, we generate ∆v(i) uniformly from [0.9, 1]pv for units
i ∈ {1, · · · , n/2} while setting ∆v(i) = 0 for other units. Combining {w(i)}ni=1 and {∆v(i)}ni=1 yields
{x(i)}ni=1 (see (28)).

Plot details In Figure. 3, we plot the scaling of errors in our estimates for Θ⋆ in the top row,
{θ⋆(i)}ni=1 in the middle row, and {∆v(i)}ni=1 in the bottom row. In particular, we present how the
error scales as the dimension n grows for various p and pv. We plot the averaged error across 50
independent trials along with ±1 standard error (the standard error is too small to be visible in our
results).

To help see the error scaling, we provide the least squares fit on the log-log scale (log error vs
log x-axis). We display the best linear fit and mention an empirical decay rate in the legend based
on the slope of that fit, e.g., for a slope of −0.56 for estimating Θ⋆ when p = 16 and pv = 4, we
report an empirical rate of n−0.56 for the averaged error. In the middle row and the bottom row of
Figure. 3, the rates vary from n0.00 to n−0.17, and we omit these weak dependencies in the legend to
reduce clutter.
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Figure 3: Error scaling with number of units n, for various p and pv, for our estimates of Θ⋆ (top
row), {θ⋆(i)}ni=1 (middle row), and {∆v(i)}ni=1 (bottom row).

Error scaling for Θ̂ From the first row of Figure. 3, we observe that the error |||Θ̂−Θ⋆|||2,∞ admits a
scaling of between n−0.56 and n−0.42 for various p and pv. These empirical rates indicate a parametric
error rate of n−0.5 for |||Θ̂−Θ⋆|||2,∞, consistent with the scaling of ε−2 in (29). Further, as expected,
the error |||Θ̂−Θ⋆|||2,∞ does not depend on pv but increases with an increase in p.

Error scaling for θ̂(i) In the middle row of Figure. 3, we see the error maxi∈[n]MSE(θ̂(i), θ⋆(i))
has a weak dependence on n for a fixed p and pv, decreases with an increase in p for any fixed n
and pv, and increases with an increase in pv for any fixed n and p. This is consistent with (30)
when max

{
ε21,

pv
p

}
= pv

p (see (32)). Further, we note that the decay of the error with p is slower
for smaller n (cf. n = 211 vs n = 214). This is expected from (30) where the n required to ensure
max

{
ε21,

pv
p

}
= pv

p increases with an increase in p. As a result, for larger p, ε21 comes into the picture
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explaining the increased dependence of the error on n (cf. p = 16 vs p = 128).

Error scaling for ∆̂v
(i)

The trends in the error maxi∈[n]∥∆̂v
(i)
−∆v(i)∥22 are similar to the error

maxi∈[n]MSE(θ̂(i), θ⋆(i)). In the bottom row of Figure. 3, we see maxi∈[n]∥∆̂v
(i)
−∆v(i)∥22 has a

weak dependence on n for a fixed p and pv, decreases with an increase in p for any fixed n and
pv, and increases with an increase in pv for any fixed n and p. This is consistent with (31) when
max

{ ε22
pv
, pvp
}
= pv

p (see (33)). For the same reason mentioned in the previous paragraph, we see a
slower decay in the error with p for smaller n (cf. n = 211 vs n = 214), and a higher dependence of
the error on n for larger p (cf. p = 16 vs p = 128).

7 Proof Sketch for Theorem. 1: Guarantee on quality of parameter
estimate

Our proof of Theorem. 1 proceeds in two stages (see Figure. 4 for an overview). First, we establish
(19) for estimating Θ⋆. Next, we use this guarantee to establish the unit-level guarantee (20) for each
of
{
θ⋆(1), · · · , θ⋆(n)

}
by substituting Θ = Θ̂ in (14), i.e., analyzing the following convex optimization

problem:

{θ̂(1), · · · , θ̂(n)} ∈ argmin
{θ(1),··· ,θ(n)}∈Λn

θ

L
(
Θ̂, θ(1), · · · , θ(n)

)
. (34)

7.1 Estimating the population-level parameter

In the first part, we show that all points Θ ∈ ΛΘ × Λnθ , such that ∥Θt −Θ⋆
t ∥2 ≥ ε for at least one

t ∈ [p], uniformly satisfy

L(Θ) ≥ L(Θ⋆) + Ω(ε2) for n ≥ cec
′βp2

ε4
·
(
p log

p

δε2
+Mθ,n

(
ε2
))
, (35)

with probability at least 1− δ. Then, we conclude the proof using contraposition.
To prove (35), we first decompose the convex (and positive) objective L(Θ) in (13) as a sum of p

convex (and positive) auxiliary objectives Lt, namely, L(Θ) =
∑

t∈[p] Lt
(
Θt

)
where

Lt
(
Θt

)
≜

1

n

∑
i∈[n]

exp
(
− [θ

(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂tt

[
[x

(i)
t ]2 − x2max

3

])
. (36)

Next, for any fixed t ∈ [p], ε > 0, and Θ ∈ Λnθ ×ΛΘ with ∥Θt −Θ⋆
t ∥2 ≥ ε, we show (see Lemma. B.1)

Lt(Θt) ≥ Lt(Θ⋆
t ) + Ω(ε2)− ε1 whenever n ≥

cec
′β log p

δ

ε21
, (37)

and then establish the same bound uniformly for all t ∈ [p] with probability 1− δ. Taking a sum
over t on both sides of (37), we conclude that for any fixed Θ with ∥Θt −Θ⋆

t ∥2 ≥ ε for some t ∈ [p],

L(Θ) ≥ L(Θ⋆) + Ω(ε2) whenever n ≥
cec

′βp2 log p
δ

ε4
, (38)
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Figure 4: Sketch diagram of the results and the proof techniques for Theorem. 1. First,
we establish (19) for estimating Θ⋆ by extending Shah et al. (2021a, Proposition I.1, Proposition
I.2) for i.i.d. data to non-identical samples. Next, we use (19) to establish (20) for the unit-level
parameters {θ⋆(i)}ni=1 via suitable concentration results for derivatives of the auxiliary loss functions
in k(39). En route, we establish three results of independent interest: (i) Proposition. F.1 that
shows that weakly dependent and bounded random variables satisfy logarithmic Sobolev inequality
(LSI) by both extending Marton (2015, Theorem. 1, Theorem. 2) and establishing a reverse-Pinkser
inequality to continuous random vectors; (ii) Proposition. F.2 that extends the tail bounds Dagan
et al. (2021, Theorem. 6) to continuous distributions satisfying LSI; and (iii) Proposition. G.1 that
extends the conditioning trick Dagan et al. (2021, Lemma. 2) for identifying a weakly dependent
subset to continuous random vectors.

with probability at least 1−δ where we substituted ε1=cε2/p. Finally, we conclude (35) by using
(38), the Lipschitzness of L (see Lemma. B.2), and a covering number argument (see Appendix. B).

We establish (37) (Lemma. B.1) via Lemma. B.3, which provides suitable concentration and
anti-concentration results for the first-order and second-order derivatives, respectively, for the auxiliary
objective Lt in (36). We prove Lemma. B.3 by extending the results from Shah et al. (2021a) to the
setting with non-identical but independent samples {x(i) ∼ fx|z

(
· |z(i); θ⋆(z(i)),Θ⋆

)
}ni=1.

7.2 Estimating the unit-level parameters

In the second part, we decompose the convex optimization problem in (34) into n convex optimization
problems:

L(i)
(
θ(i)
)
≜
∑
t∈[p]

exp
(
−
[
θ
(i)
t + 2Θ̂⊤

t,−tx
(i)
−t
]
x
(i)
t − Θ̂tt

(
[x

(i)
t ]2 − x2max

3

))
for i ∈ [n]. (39)
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Noting that the set Λnθ places independent constraints on the n unit-level parameters, namely
θ(i) ∈ Λθ, independently for all i ∈ [n] and combining (13) and (34), we find that

min
{θ(1),··· ,θ(n)}∈Λn

θ

L
(
Θ̂, θ(1), · · · , θ(n)

) (39)
=

1

n

∑
i∈[n]

min
θ(i)∈Λθ

L(i)
(
θ(i)
)
=⇒ θ̂(i)∈ argmin

θ(i)∈Λθ

L(i)
(
θ(i)
)
,

for each i ∈ [n]. Next, we establish that with probability at least 1− δ,

L(i)
(
θ(i)
)
≥ L(i)

(
θ⋆(i)

)
+R2(ε, δ) when n ≥ cec

′βp4

ε4

(
p log

p2

δε2
+ M̃θ,n(ε, δ)

)
, (40)

uniformly for all points θ(i) ∈ Λθ with ∥θ(i) − θ⋆(i)∥2 ≥ R(ε, δ) (see (17)). We conclude the proof by
contraposition with the basic inequality L(i)(θ̂(i)) ≤ L(i)(θ⋆(i)) and a standard union bound over all
i ∈ [n].

The proof of (40) mimics the same road map as that for (35). Lemma. C.1 shows that for any
fixed θ(i) ∈ Λθ, if θ(i) is far from θ⋆(i), then with high probability L(i)

(
θ(i)
)

is significantly larger than
L(i)

(
θ⋆(i)

)
. We prove Lemma. C.1 via concentration of derivatives of L(i) (39) in Lemma. C.3, this

objective’s Lipschitznes in Lemma. C.2, and a covering number argument (see Appendix. C).
The proof of Lemma. C.3 involves several novel arguments: First, for a τ -Sparse Graphical Model

(Definition. G.1), i.e., a generalization of the random vector w in (2), Proposition. G.1 identifies a
subset that satisfies Dobrushin’s uniqueness condition (Definition. F.2) after conditioning on the
complementary subset. Second, Proposition. F.1 shows that a bounded and weakly dependent
continuous random vector (defined using Dobrushin’s uniqueness condition) satisfies the logarithmic
Sobolev inequality (LSI). Third, Proposition. F.2 establishes tail bounds for arbitrary functions of a
continuous random vector that satisfies LSI. Putting together these results and a robustness result
(Lemma. C.4) while invoking concentration results to account for the estimation error for Θ⋆, yields
Lemma. C.3.

8 Discussion

We introduce an exponential family approach to learn unit-level counterfactual distributions from
a single sample per unit even when there is unobserved confounding. By conditioning on the
latent confounders and using a novel convex loss function, we estimate the parameters of unit-level
counterfactual distributions given the information about what actually happened. The resulting
estimates of unit-level counterfactual distributions enable us to estimate any functional of each unit’s
potential outcomes under alternate interventions. We analyze each unit’s expected potential outcomes
under alternate interventions, thereby providing a guarantee on unit-level counterfactual effects, i.e.,
individual treatment effects. We note that our approach makes only macro-level assumptions about
the underlying causal graph and does not assume the knowledge of the micro-level causal graph.

A side product of our results is a strategy for answering interventional questions, e.g., to estimate
average treatment effects. These questions are equivalent to estimating distributions of the form
fy|do(a)(y|do(a = a)) where the do-operator (Pearl, 2009) forces a to be a. Under the causal framework
considered (Figure. 1(b)), we have fy|do(a)(y|do(a = a)) = Ev,z[fy|a,z,v(y|a, z,v)]. Consequently, the
mixture distribution n−1

∑
i∈[n] f̂

(i)
y|a(y|a) with f̂ (i)y|a(y|a) defined in (15), serves as a natural estimate

via our strategy. Investigating the efficacy of this estimator is an interesting future direction.
In this work, the conditional exponential family distribution of y in Section. 3.2 or in Section. 5.2

was such that the effect of unobserved covariates z—after conditioning on them—was captured by a
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first-order interaction term varying with the realized value of z for each unit, e.g., {θ(z(i))}ni=1for the
conditional distribution in Section. 3.2. Focusing on Section. 3.2, when one considers higher-order
interaction terms in the joint distribution, the conditional distributions would also have higher-order
interaction terms (the highest order in the conditional distribution is one less than the highest order
in the joint distribution) that vary with z. Focusing on Section. 5.2, the exponent of the exponential
tilting of the base distribution of the outcomes by the unobserved covariates could have higher-order
terms. For such cases, while our analysis for population-level parameters (Theorem. 1 Part I’s proof
in Appendix. B) is likely to extend easily, new arguments for analyzing quadratic (or higher-order)
interaction terms that vary for each unit seem necessary. Developing these results, e.g., suitable
analogs of Dobrushin’s condition for higher-order exponential family, present an exciting future venue
for research.

Our methodology can be useful for a class of multi-task learning problems (Caruana, 1997), e.g.,
when we have multiple logistic regression tasks with some commonalities. For a logistic regression
task, the exponential family model (6) has been used by Dagan et al. (2021) to allow dependencies
between the labels via the parameter Θ (instead of assuming independence between the labels), e.g.,
for spatio-temporal data. They consider a single regression task and assume that the dependency
matrix Θ is known up to a constant and learn a task-specific parameter θ(z) (where z denotes a
task). Our model and methodology apply to the case of fully unknown Θ given multiple datasets
that share the same dependency parameter Θ but have varying task-specific parameters θ(z); and
provide a tractable way to estimate all these parameters together. In fact, our framework and results
also apply beyond the quadratic dependencies captured by Θ as described in Section. 5.2. Analyzing
whether our methodology can be extended beyond logistic regression models for multi-task learning
is a question worthy of further investigation.
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A Proper loss function and projected gradient descent

In this section, we prove Proposition. 1 showing that the loss function in (13) is a proper loss function.
We also provide an algorithm to obtain an ϵ-optimal estimate of Θ̂.

A.1 Proof of Proposition 1

Fix any z ∈ Zpz . For every t ∈ [p], define the following parametric distribution

ux|z
(
x|z; θt(z),Θt

)
∝

fx|z
(
x|z; θ⋆(z),Θ⋆

)
fxt|x−t,z(xt|x−t, z; θt(z),Θt)

, (41)

where fx|z
(
x|z; θ⋆(z),Θ⋆

)
is as defined in (6) and fxt|x−t,z(xt|x−t, z; θt(z),Θt) is as defined in (12).

Letting xt ≜ x2t − x2max/3 and using (12), we can write ux|z
(
x|z; θt(z),Θt

)
in (41) as

ux|z
(
x|z; θt(z),Θt

)
∝ fx|z

(
x|z; θ⋆(z),Θ⋆

)
exp

(
− [θt(z) + 2Θ⊤

t,−tx−t]xt −Θttxt
)
.

Then, we have

ux|z
(
x|z; θt(z),Θt

)
=

fx|z
(
x|z; θ⋆(z),Θ⋆

)
exp

(
−[θt(z)+2Θ⊤

t,−tx−t]xt−Θttxt
)∫

x∈X pfx|z
(
x|z; θ⋆(z),Θ⋆

)
exp

(
−[θt(z)+2Θ⊤

t,−tx−t]xt−Θttxt
)
dx

=
fx|z
(
x|z; θ⋆(z),Θ⋆

)
exp

(
− [θt(z) + 2Θ⊤

t,−tx−t]xt −Θttxt
)

Ex|z

[
exp

(
− [θt(z) + 2Θ⊤

t,−tx−t]xt −Θttxt
)] . (42)
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Further, for θt(z) = θ⋆t (z), and Θt = Θ⋆
t , we can write an expression for ux|z

(
x|z; θ⋆t (z),Θ⋆

t

)
which

does not depend on xt functionally. From (12), we have

ux|z
(
x|z; θ⋆t (z),Θ⋆

t

)
∝ fx−t|z

(
x−t|z; θ⋆(z),Θ⋆

)
. (43)

Now, consider the difference between KL
(
ux|z
(
x|z; θ⋆t (z),Θ⋆

t

) ∥∥ux|z(x|z; θt(z),Θt

))
and

KL
(
ux|z
(
x|z; θ⋆t (z),Θ⋆

t

) ∥∥fx|z(x|z; θ⋆(z),Θ⋆
))

. We have

KL
(
ux|z
(
· |z; θ⋆t (z),Θ⋆

t

) ∥∥ux|z( · |z; θt(z),Θt

))
− KL

(
ux|z
(
· |z; θ⋆t (z),Θ⋆

t

) ∥∥fx|z( · |z ; θ⋆(z),Θ⋆
))

(a)
=

∫
x∈X p

ux|z
(
x|z; θ⋆t (z),Θ⋆

t

)
log

fx|z
(
x|z; θ⋆(z),Θ⋆

)
ux|z
(
x|z; θt(z),Θt

) dx
(42)
=

∫
x∈X p

ux|z
(
x|z; θ⋆t (z),Θ⋆

t

)
log

Ex|z

[
exp

(
− [θt(z) + 2Θ⊤

t,−tx−t]xt −Θttxt
)]

exp
(
− [θt(z) + 2Θ⊤

t,−tx−t]xt −Θttxt
) dx

= logEx|z

[
exp

(
− [θt(z) + 2Θ⊤

t,−tx−t]xt −Θttxt
)]

−
∫
x∈X p

ux|z
(
x|z; θ⋆t (z),Θ⋆

t

)(
[θt(z) + 2Θ⊤

t,−tx−t]xt +Θttxt
)
dx

(b)
= logEx|z

[
exp

(
− [θt(z) + 2Θ⊤

t,−tx−t]xt −Θttxt
)]
, (44)

where (a) follows from the definition of KL-divergence and (b) follows because integral is zero
since ux|z

(
x|z; θ⋆t (z),Θ⋆

t

)
does not functionally depend on xt as in (43), and

∫
xt∈X xtdxt = 0 and∫

xt∈X xtdxt = 0. Now, we can write

Ex|z
[
L
(
Θ
)]

=
1

n

∑
t∈[p]

∑
i∈[n]

Ex|z

[
exp

(
− [θt(z

(i)) + Θ⊤
t,−tx

(i)
−t]x

(i)
t −Θttx

(i)
t

)]
(44)
=

1

n

∑
t∈[p]

∑
i∈[n]

exp
(
KL
(
ux|z
(
· |z(i); θ⋆t (z

(i)),Θ⋆
t

) ∥∥∥ux|z( · |z(i); θt(z
(i)),Θt

))
− KL

(
ux|z
(
· |z(i); θ⋆t (z

(i)),Θ⋆
t

) ∥∥∥fx|z( · |z(i); θ⋆(z(i)),Θ⋆
)))

. (45)

We note that the parameters only show up in the first KL-divergence term in the right-hand-side of
(45). Therefore, it is easy to see that Ex|z

[
L
(
Θ
)]

is minimized uniquely when θt(z(i)) = θ⋆t (z
(i)) and

Θt = Θ⋆
t for all t ∈ [p] and all i ∈ [n], i.e., when Θ = Θ⋆.

A.2 Algorithm

In this section, we provide a projected gradient descent algorithm to return an ϵ-optimal estimate of
the convex optimization in (14). We note that alternative algorithms (including Frank-Wolfe) can
also be used.

We note that, in general, projecting onto the space Λnθ × ΛΘ may not be easy depending on the
specific form of Λθ. For Examples. 1 and 2, projecting on Λθ is equivalent to projecting onto the
k-dimensional vector a. For Example. 2, the ℓ0-sparsity is relaxed to ℓ1 sparsity. We also do not
focus on any issues that may arise due to the choice of the step size η.
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Algorithm 1: Projected Gradient Descent
Input: number of iterations τ , step size η, ϵ, parameter sets Λθ and ΛΘ

Output: ϵ-optimal estimate Θ̂ϵ

Initialization: Θ(0) = 0
1 for j = 0, · · · , τ do
2 Θ(j+1) ← argminΘ∈Λn

θ×ΛΘ
∥Θ(j) − η∇L

(
Θ(j)

)
−Θ∥2

3 Θ̂ϵ ← Θ(τ+1)

B Proof of Theorem 1 Part I: Recovering population-level parameter

To prove this part, it is sufficient to show that all points Θ ∈ ΛΘ ×Λnθ , such that ∥Θt −Θ⋆
t ∥2 ≥ ε for

at least one t ∈ [p], uniformly satisfy

L(Θ) ≥ L(Θ⋆) + Ω(ε2) for n ≥ cec
′βp2

ε4
·
(
p log

p

δ
+Mθ,n

(
ε2
))
, (46)

with probability at least 1−δ. Then, the guarantee in Theorem. 1 follows from (14) by contraposition.
To that end, we decompose L(Θ) in (13) as a sum of p convex (and positive) auxiliary objectives

Lt
(
Θt

)
, i.e., L(Θ) =

∑
t∈[p] Lt

(
Θt

)
where

Lt
(
Θt

)
≜

1

n

∑
i∈[n]

exp
(
−[θ(i)t +2Θ⊤

t,−tx
(i)
−t]x

(i)
t −Θttx

(i)
t

)
, (47)

with x
(i)
t =

[
x
(i)
t

]2 − x2max/3 and Θt =
{
θ
(1)
t , · · · , θ(n)t ,Θt

}
as defined in (13). The lemma below,

proven in Appendix. B.1, shows that for any fixed and feasible Θt, if Θt is far from Θ⋆
t , then with

high probability Lt
(
Θt

)
is significantly larger than Lt

(
Θ⋆
t

)
. The lemma uses the following constants

that depend on model parameters τ ≜ (α, β, xmax,Θ):

C1,τ ≜α+4βxmax and C2,τ ≜ exp (xmax(α+ 2βxmax)). (48)

Lemma B.1 (Gap between the loss function for a fixed parameter). Consider any Θ ∈ Λnθ × ΛΘ.
Fix any δ ∈ (0, 1). Then, we have uniformly for all t ∈ [p]

Lt
(
Θt

)
≥ Lt

(
Θ⋆
t

)
+
λmin ∥Θt −Θ⋆

t ∥
2
2

2C2,τ

− ε for n ≥ cec
′β log(p/δ)

ε2
,

with probability at least 1− δ, where C2,τ was defined in (48).

Next, we show that the loss function L is Lipschitz (see Appendix. B.3 for the proof).

Lemma B.2 (Lipschitzness of the loss function). Consider any Θ, Θ̃ ∈ ΛΘ. Then, the loss function
L is 2x2maxC2,τ -Lipschitz in a suitably-adjusted ℓ1 norm:∣∣L(Θ̃)− L(Θ)∣∣ ≤ 2x2maxC2,τ

(∑
t∈[p]

∥Θ̃t −Θt∥1 +
1

n

∑
i∈[n]

∥θ̃(i) − θ(i)∥1
)
, (49)

where the constant C2,τ was defined in (48).

Given these lemmas, we now proceed with the proof.
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Proof strategy We want to show that all points Θ ∈ ΛΘ × Λnθ , such that ∥Θt −Θ⋆
t ∥2 ≥ ε for at

least one t ∈ [p], uniformly satisfy (46) with probability at least 1− δ. To do so, we consider the set
of feasible Θ such that the distance of Θt from Θ⋆

t is at least ε > 0 in ℓ2 norm for some t ∈ [p], and
denote the set by ΛεΘ × Λnθ (see (50) and (9)). Then, using an appropriate covering set of ΛεΘ × Λnθ
and the Lipschitzness of L, we show that the value of L at all points in ΛεΘ × Λnθ is uniformly Ω(ε2)
larger than the value of L at Θ⋆ with high probability.

Arguments for points in the covering set Define the set

ΛεΘ ≜

{
Θ ∈ Rp×p : Θ = Θ⊤, |||Θ|||max ≤ α, |||Θ|||∞ ≤ β,max

t∈[p]
∥Θ⋆

t −Θt∥2 ≥ ε
}
. (50)

Let U(ΛεΘ, ε′) be the ε′-cover of smallest size for the set ΛεΘ with respect to ∥·∥1 (see Definition. 2)
and let C(ΛεΘ, ε′) = |U(ΛεΘ, ε′)| be the ε′-covering number. Similarly, let U(ΛεΘ, ε′′) be the ε′′-cover of
the smallest size for the set Λnθ with respect to ∥·∥1 and let C(Λnθ , ε′′) = |U(ΛεΘ, ε′′)| be the ε′′-covering
number. We choose

ε′ ≜
λminε

2

32x2maxC
2
2,τ

and ε′′ ≜
λminε

2n

32x2maxC
2
2,τ

. (51)

Now, we argue by a union bound that the value of L at all points in U(ΛεΘ, ε′)×U(Λnθ , ε′′) is uniformly
Ω(ε2) larger than L(Θ⋆) with high probability. For any Θ ∈ U(ΛεΘ, ε′)× U(Λnθ , ε′′), we have

∑
t∈[p]

∥Θ⋆
t −Θt∥22

(a)

≥ ε2, (52)

where (a) follows because U(ΛεΘ, ε′) ⊆ ΛεΘ. Now, applying Lemma. B.1 with ε 7→λminε
2/4C2,τp and

δ 7→δ/(C(ΛεΘ, ε′) + C(Λnθ , ε′′)) and summing over t ∈ [p], we find that

∑
t∈[p]

Lt
(
Θt

)
≥
∑
t∈[p]

(
Lt
(
Θ⋆
t

)
+
λmin ∥Θt −Θ⋆

t ∥
2
2

2C2,τ

− λminε
2

4C2,τp

)

=⇒ L
(
Θ
)
≥ L

(
Θ⋆
)
+
λmin

2C2,τ

∑
t∈[p]

∥Θ⋆
t −Θt∥22 −

λminε
2

4C2,τ

(52)
≥ L

(
Θ⋆
)
+
λminε

2

4C2,τ

,

with probability at least 1− δ/(C(ΛεΘ, ε′) + C(Λnθ , ε′′)) whenever

n ≥
cec

′βp2 log
(
(C(ΛεΘ, ε′)× C(Λnθ , ε′′)) · p/δ

)
λ2minε

4
. (53)

By applying the union bound over U(ΛεΘ, ε′)× U(Λnθ , ε′′), as long as n satisfies (53), we have

L
(
Θ
)
≥ L

(
Θ⋆
)
+
λminε

2

4C2,τ

uniformly for every Θ ∈ U(ΛεΘ, ε′)× U(Λnθ , ε′′), (54)

with probability at least 1− δ.
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Arguments for points outside the covering set Next, we establish the claim (46) for an
arbitrary Θ̃ ∈ ΛεΘ × Λnθ conditional on the event that (54) holds. Given a fixed Θ̃ ∈ ΛεΘ × Λnθ , let
Θ be (one of) the point(s) in the cover U(ΛεΘ, ε′)× U(Λnθ , ε′′) that satisfies

∑
t∈[p] ∥Θ̃t −Θt∥1 ≤ ε′

and
∑

i∈[n] ∥θ̃(i) − θ(i)∥1 ≤ ε′′ (there exists such a point by Definition. 2). Then, the choices (51) and
Lemma. B.2 put together imply that

L
(
Θ̃
)
≥ L

(
Θ
)
−2x2maxC2,τ

(∑
t∈[p]

∥Θ̃t −Θt∥1 +
1

n

∑
i∈[n]

∥θ̃(i) − θ(i)∥1
)

≥ L
(
Θ
)
− 2x2maxC2,τ

(
ε′ +

ε′′

n

) (51)
≥ L

(
Θ
)
−λminε

2

8C2,τ

(54)
≥ L

(
Θ⋆
)
+
λminε

2

8C2,τ

.

Bounding n Using ΛεΘ ⊆ ΛΘ and the outer product definition of θn, we find that

C(ΛεΘ, ε′) ≤ C(ΛΘ, ε
′) and C(Λnθ , ε′′) = (C(Λθ, ε′′))n. (55)

Putting together (51) and (55), the lower bound (53) can be replaced by

n ≥ cec
′βp2

λ2minε
4
·
(
log

p

δ
+ log C

(
ΛΘ,

λminε
2

cec′β

)
+ n log C

(
Λθ,

λminnε
2

cec′β

))
,

which yields the claim immediately after noting that

log C
(
ΛΘ,

λminε
2

cec′β

)
=O

(
β2p log

( 1

λminε2

))
and log C

(
Λθ,

λminnε
2

cec′β

)
=Mθ

(λminnε
2

cec′β

)
.

B.1 Proof of Lemma. B.1: Gap between the loss function for a fixed parameter

Fix any ε > 0, any δ ∈ (0, 1), and t ∈ [p]. Consider any direction Ωt ≜
{
ω
(1)
t , · · · , ω(n)

t ,Ωt
}
∈ Rn+p

along the parameter Θt, i.e.,

Ωt = Θt −Θ⋆
t , and Ωt = Θt −Θ⋆

t . (56)

We denote the first-order and the second-order directional derivatives of the loss function Lt in (47)
along the direction Ωt evaluated at Θt by ∂Ωt

Lt(Θt) and ∂2
Ω2

t
Lt(Θt), respectively. Below, we state a

lemma (with proof divided across Appendix. B.1.1 and Appendix. B.1.2) that provides us a control
on ∂Ωt

Lt(Θt) and ∂2
Ω2

t
Lt(Θt). The assumptions of Lemma. B.1 remain in force.

Lemma B.3 (Control on first and second directional derivatives). For any fixed ε1, ε2 > 0, δ1, δ2 ∈
(0, 1), t ∈ [p], Θ ∈ Λnθ × ΛΘ defined in (13) and Ωt defined in (56), we have the following:

(a) Concentration of first directional derivative: with probability at least 1− δ1,

∣∣∂Ωt
Lt(Θ⋆

t )
∣∣ ≤ ε1 for n ≥

8C2
1,τC

2
2,τx

2
max log

2p
δ1

ε21
and uniformly for all t ∈ [p].

(b) Anti-concentration of second directional derivative: with probability at least 1− δ2,

∂2
Ω2

t
Lt(Θt)≥

λmin ∥Ωt∥22
C2,τ

− ε2 for n≥
32C4

1,τx
4
max log

2p
δ2

ε22C
2
2,τ

and uniformly for all t ∈ [p].
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Given this lemma, we now proceed with the proof. Define a function g : [0, 1]→ Rn+p

g(a) ≜ Θ⋆
t + a(Θt −Θ⋆

t ).

Notice that g(0) = Θ⋆
t and g(1) = Θt as well as

dLt(g(a))
da

= ∂Ωt
Lt(Θ̃t)

∣∣
Θ̃t=g(a)

and
d2Lt(g(a))

da2
= ∂2

Ω2
t
Lt(Θ̃t)

∣∣
Θ̃t=g(a)

. (57)

By the fundamental theorem of calculus, we have

dLt(g(a))
da

≥ dLt(g(a))
da

∣∣
a=0

+ a min
a∈(0,1)

d2Lt(g(a))
da2

. (58)

Integrating both sides of (58) with respect to a, we obtain

Lt(g(a))− Lt(g(0)) ≥ a
dLt(g(a))

da

∣∣
a=0

+
a2

2
min
a∈(0,1)

d2Lt(g(a))
da2

(57)
= a∂Ωt

Lt(Θ̃t)
∣∣
Θ̃t=g(0)

+
a2

2
min
a∈(0,1)

∂2
Ω2

t
Lt(Θ̃t)

∣∣
Θ̃t=g(a)

(a)
= a∂Ωt

Lt(Θ⋆
t ) +

a2

2
min
a∈(0,1)

∂2
Ω2

t
Lt(Θ̃t)

∣∣
Θ̃t=g(a)

(b)

≥ −a
∣∣∂Ωt
Lt(Θ⋆

t )
∣∣+ a2

2
min
a∈(0,1)

∂2
Ω2

t
Lt(Θ̃t)

∣∣
Θ̃t=g(a)

, (59)

where (a) follows because g(0) = Θ⋆
t and (b) follows by the triangle inequality. Plugging in a = 1 in

(59) as well as using g(0) = Θ⋆
t and g(1) = Θt, we find that

Lt(Θt)− Lt(Θ⋆
t ) ≥ −

∣∣∂Ωt
Lt(Θ⋆

t )
∣∣+ 1

2
min
a∈(0,1)

∂2
Ω2

t
Lt(Θ̃t)

∣∣
Θ̃t=g(a)

.

Now, we use Lemma. B.3 with

ε1 7→ε
2
, δ1 7→δ

2
, ε2 7→ε, and δ2 7→δ

2
.

Thus for n ≥ cec
′β log(p/δ)

ε2
, we have

Lt(Θt)−Lt(Θ⋆
t ) ≥ −

ε

2
+
1

2

(
λmin ∥Ωt∥22

C2,τ

− ε
)
=
λmin ∥Ωt∥22

2C2,τ

− ε,

uniformly for all t ∈ [p], with probability at least 1− δ.

B.1.1 Proof of Lemma. B.3(a): Concentration of first directional derivative

For every t ∈ [p] with Ωt defined in (56), we claim that the first-order directional derivative of the
loss function defined in (47) is given by

∂Ωt
Lt(Θt) = −

1

n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)

)
exp

(
− [θ

(i)
t + 2Θ⊤

t,−tx
(i)
−t]x

(i)
t −Θttx

(i)
t

)
, (60)
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where ∆
(i)
t ≜

 ω(i)
t

Ω⊤
t,−t
Ωtt

 ∈ Rp+1 and x̃(i) ≜

 x
(i)
t

2x
(i)
−tx

(i)
t

x
(i)
t

 ∈ Rp+1 for all i ∈ [n] with x
(i)
t =

[
x
(i)
t

]2 −
x2max/3. We provide a proof at the end.

Next, we claim that the mean of the first-order directional derivative evaluated at the true parameter
is zero. We provide a proof at the end.

Lemma B.4 (Zero-meanness of first directional derivative). For every t ∈ [p] with Ωt defined in
(56), we have E

[
∂Ωt
Lt(Θ⋆

t )
]
= 0.

Given these, we proceed to show the concentration of the first-order directional derivative evaluated
at the true parameter. Fix any t ∈ [p]. From (60), we have

∂Ωt
Lt(Θ⋆

t )
(60)
= − 1

n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)

)
exp

(
− [θ

⋆(i)
t + 2Θ⋆⊤

t,−tx
(i)
−t]x

(i)
t −Θ⋆

ttx
(i)
t

)
.

Each term in the above summation is an independent random variable and is bounded as follows∣∣∣([∆(i)
t ]⊤x̃(i)

)
× exp

(
− [θ

⋆(i)
t + 2Θ⋆⊤

t,−tx
(i)
−t]x

(i)
t −Θ⋆

ttx
(i)
t

)∣∣∣
(a)
=
∣∣∣(ω(i)

t x
(i)
t + 2Ω⊤

t,−tx
(i)
−tx

(i)
t +Ωttx

(i)
t

)
× exp

(
− [θ

⋆(i)
t + 2Θ⋆⊤

t,−tx
(i)
−t]x

(i)
t −Θ⋆

ttx
(i)
t

)∣∣∣
(b)

≤
∣∣|ω(i)

t |+ 2∥Ωt∥1∥x(i)∥∞
∣∣× xmax × exp

((
|θ⋆(i)t |+ 2∥Θ⋆

t ∥1∥x(i)∥∞
)
xmax

)
(c)

≤
(
2α+ 8βxmax

)
× xmax × exp

(
(α+ 2βxmax)xmax

) (48)
= 2C1,τC2,τxmax,

where (a) follows by plugging in ∆
(i)
t and x̃(i), (b) follows from triangle inequality, Cauchy–Schwarz

inequality, and because ∥x(i)∥∞ ≤ xmax for all i ∈ [n], and (c) follows because θ⋆(i) ∈ Λθ for all
i ∈ [n], Θ⋆ ∈ ΛΘ, ω(i) ∈ 2Λθ for all i ∈ [n], Ω ∈ 2ΛΘ, and ∥x(i)∥∞ ≤ xmax for all i ∈ [n].

Further, from Lemma. B.4, we have E
[
∂Ωt
Lt(Θ⋆

t )
]
= 0. Therefore, using the Hoeffding’s inequality

results in

P
(∣∣∂Ωt

Lt(Θ⋆
t )
∣∣ > ε1

)
< 2 exp

(
− nε21

8C2
1,τC

2
2,τx

2
max

)
.

The proof follows by using the union bound over all t ∈ [p].

Proof of (60): Expression for first directional derivative Fix any t ∈ [p]. The first-order
partial derivatives of Lt with respect to entries of Θt defined in (47) are given by

∂Lt(Θt)

∂θ
(i)
t

=
−1
n
x
(i)
t exp

(
−[θ(i)t +2Θ⊤

t,−tx
(i)
−t]x

(i)
t −Θttx

(i)
t

)
for all i ∈ [n], and

∂Lt(Θt)

∂Θtu
=


−2
n

∑
i∈[n] x

(i)
t x

(i)
u exp

(
−[θ(i)t +2Θ⊤

t,−tx
(i)
−t]x

(i)
t −Θttx

(i)
t

)
for all u ∈ [p]\{t}.

−1
n

∑
i∈[n] x

(i)
t exp

(
−[θ(i)t +2Θ⊤

t,−tx
(i)
−t]x

(i)
t −Θttx

(i)
t

)
for u = t.

32



Now, we can write the first-order directional derivative of Lt as

∂Ωt
Lt(Θt)≜ lim

h→0

Lt(Θt + hΩt)− Lt(Θt)

h
=
∑
i∈[n]

ω
(i)
t

∂Lt(Θt)

∂θ
(i)
t

+
∑
u∈[p]

Ωtu
∂Lt(Θt)

∂Θtu

=
−1
n

∑
i∈[n]

(
ω
(i)
t x

(i)
t +2

∑
u∈[p]\{t}

Ωtux
(i)
t x

(i)
u +Ωttx

(i)
t

)
exp

(
−[θ(i)t +2Θ⊤

t,−tx
(i)
−t ]x

(i)
t −Θttx

(i)
t

)
=
−1
n

∑
i∈[n]

(
ω
(i)
t x

(i)
t +2Ω⊤

t,−tx
(i)
−tx

(i)
t +Ωttx

(i)
t

)
exp

(
−[θ(i)t +2Θ⊤

t,−tx
(i)
−t ]x

(i)
t −Θttx

(i)
t

)
(a)
=
−1
n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)

)
exp

(
−[θ(i)t +2Θ⊤

t,−tx
(i)
−t]x

(i)
t −Θttx

(i)
t

)
,

where (a) follows from the definitions of ∆(i)
t and x̃(i).

Proof of Lemma. B.4: Zero-meanness of first directional derivative Fix any t ∈ [p]. From
(60), we have

E
[
∂Ωt
Lt(Θ⋆

t )
]

(60)
= − 1

n

∑
i∈[n]

Ex(i),z(i)

[(
[∆

(i)
t ]⊤x̃(i)

)
exp

(
− [θ

⋆(i)
t + 2Θ⋆⊤

t,−tx
(i)
−t]x

(i)
t −Θ⋆
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(i)
t

)]
(a)
= − 1
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i∈[n]
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Ez(i)

[
∆

(i)
tuEx(i)|z(i)

[
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(
−[θ⋆t (z(i))+2Θ⋆⊤

t,−tx
(i)
−t]x

(i)
t −Θ⋆

ttx
(i)
t

)]]
,

where (a) follows by linearity of expectation and by plugging in θ⋆(i)t = θ⋆t (z
(i)). Now to complete

the proof, we show that for any i ∈ [n], u ∈ [p+ 1] and z(i) ∈ Zpz , we have

Ex(i)|z(i)

[
x̃(i)
u exp

(
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(i)
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t −Θ⋆
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Fix any i ∈ [n], u ∈ [p+ 1] and z(i) ∈ Zpz . We have
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t,−tx

(i)
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t

)
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(
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)
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)
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(i)
t

=

∫
X p−1

[ ∫
X
x̃(i)u dx

(i)
t

]
fx−t|z

(
x
(i)
−t|z(i)

)
dx

(i)
−t∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤
t,−tx

(i)
−t]x

(i)
t +Θ⋆
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(b)
= 0,

where (a) follows by plugging in fxt|x−t,z

(
x
(i)
t |x

(i)
−t, z

(i); θ⋆t (z
(i)),Θ⋆

t

)
from (12) and (b) follows because∫

X x
(i)
t dx

(i)
t = 0 and

∫
X x

(i)
t dx

(i)
t = 0.

B.1.2 Proof of Lemma. B.3(b): Anti-concentration of second directional derivative

We start by claiming that the second-order directional derivative can be lower bounded by a quadratic
form. We provide a proof in Appendix. B.1.2.

Lemma B.5 (Lower bound on the second directional derivative). For every t ∈ [p] with Ωt defined
in (56), we have

∂2
Ω2

t
Lt(Θt) ≥

1

nC2,τ

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)

)2
,

where ∆
(i)
t ≜

 ω(i)
t

Ω⊤
t,−t
Ωtt

 ∈ Rp+1 and x̃(i) ≜

 x
(i)
t

2x
(i)
−tx

(i)
t

x
(i)
t

 ∈ Rp+1 for all i ∈ [n] with x(i)t =
[
x
(i)
t

]2−x2max/3

and the constant C2,τ was defined in (48).

Given this, we proceed to show the anti-concentration of the second-order directional derivative. Fix
any t ∈ [p] and any Θ ∈ Λnθ × ΛΘ. From Lemma. B.5, we have

∂2
Ω2

t
Lt(Θt) ≥

1

nC2,τ

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)

)2
. (61)

First, using the Hoeffding’s inequality, let us show concentration of 1
n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)

)2
around

its mean. We observe that each term in the summation is an independent random variable and is
bounded as follows(

[∆
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)
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(
ω
(i)
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(c)
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(
2α+8βxmax
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x2max

(48)
= 4C2

1,τx
2
max,

where (a) follows by plugging in ∆
(i)
t and x̃(i), (b) follows from triangle inequality, Cauchy–Schwarz

inequality and because ∥x(i)∥∞ ≤ xmax for all i ∈ [n], and (c) follows because Ω ∈ 2ΛΘ, ω(i) ∈ 2Λθ,
and ∥x(i)∥∞ ≤ xmax for all i ∈ [n]. Then, from the Hoeffding’s inequality, for any ε > 0 we have

P
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E
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)
< 2 exp
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− nε2

32C4
1,τx

4
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)
.

Applying the union bound over all t ∈ [p], for any δ ∈ (0, 1) and uniformly for all t ∈ [p], we have

1

n

∑
i∈[n]

(
[∆

(i)
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E
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− ε, (62)
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with probability at least 1− δ as long as

n ≥
32C4

1,τx
4
max

ε2
log

(
2p

δ

)
.

Now, we lower bound E
[(

[∆
(i)
t ]⊤x̃(i)

)2]
for every t ∈ [p] and every i ∈ [n]. Fix any t ∈ [p] and

i ∈ [n]. We have
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[
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] (b)
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where (a) follows from Assumption. 2 and (b) follows from the definition of ∆(i)
t . Combining (61)

to (63), for any δ ∈ (0, 1) and uniformly for all t ∈ [p], we have

∂2
Ω2

t
Lt(Θt) ≥

1

C2,τ

(
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,

with probability at least 1− δ as long as
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1,τx
4
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ε2
log

(
2p

δ

)
.

Choosing ε = ε2C2,τ and δ = δ2 yields the claim.

Proof of Lemma. B.5: Lower bound on the second directional derivative For every t ∈ [p]
with Ωt defined in (56), we claim that the second-order directional derivative of the loss function
defined in (47) is given by

∂2
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t
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1
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∑
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where ∆
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]2 −
x2max/3. We provide a proof at the end.

Given this claim, we proceed to prove the lower bound on the second directional derivative. Fix any
t ∈ [p]. From (64), we have
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(b)
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where (a) follows from triangle inequality, Cauchy–Schwarz inequality and because ∥x(i)∥∞ ≤ xmax

for all i ∈ [n], and (b) follows because θ(i) ∈ Λθ for all i ∈ [n], Θ ∈ ΛΘ, and ∥x(i)∥∞ ≤ xmax for all
i ∈ [n].

Proof of (64): Expression for second directional derivative Fix any t ∈ [p]. The second-order
partial derivatives of Lt with respect to entries of Θt defined in (13) are given by
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t −Θttx

(i)
t

)
for v= t and u= t.

∂2Lt(Θt)

∂Θtuθ
(i)
t

=
∂2Lt(Θt)

∂θ
(i)
t Θtu

=



2
n

[
x
(i)
t

]2
x
(i)
u exp

(
−[θ(i)t +2Θ⊤

t,−tx
(i)
−t]x

(i)
t −Θttx

(i)
t

)
for all i ∈ [n], u ∈ [p]\{t} .

1
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(i)
t x

(i)
t exp

(
−[θ(i)t +2Θ⊤

t,−tx
(i)
−t]x

(i)
t −Θttx

(i)
t

)
for all i ∈ [n], u = t.

Now, we can write the second-order directional derivative of Lt as

∂2
Ω2

t
Lt(Θt) ≜ lim

h→0

∂Ωt
Lt(Θt + hΩt)−∂Ωt

Lt(Θt)

h

=
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[
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(i)
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]2∂2Lt(Θt)

∂
[
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t

]2 +
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∑
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ΩtuΩtv
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∂ΘtuΘtv
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t
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u
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∑
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t

[
Ωttx
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t
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×exp

(
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)
=
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(
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exp
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(i)
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)
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(a)
=

1

n

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)

)2
exp

(
− [θ

(i)
t + 2Θ⊤

t,−tx
(i)
−t]x

(i)
t −Θttx

(i)
t

)
,

where (a) follows from the definitions of ∆(i)
t and x̃(i).

B.2 Example for Assumption. 2

As seen in (63), Assumption. 2 is used to lower bound Ex(i),z(i)

[(
[∆

(i)
t ]⊤x̃(i)

)2] by ∥Ωt∥22. In this

section, we show that Ex(i),z(i)

[(
[∆

(i)
t ]⊤x̃(i)

)2] can be lower bounded by ∥Ωt∥22 without requiring
Assumption. 2 if Θ⋆

tt = 0 for all t ∈ [p] and the row-wise ℓ1 sparsity of Θ in Assumption. 1 is assumed
to be induced by row-wise ℓ0 sparsity, i.e., ∥Θt∥0 ≤ β/α for all t ∈ [p]. To that end, first we claim
that the conditional variance of x(i)t conditioned on x−t = x

(i)
−t and z = z(i) is lower bounded by a

constant for every t ∈ [p] and i ∈ [n]. We provide a proof in Appendix. B.2.1.

Lemma B.6 (Lower bound on the conditional variance). We have

Var
(
x
(i)
t

∣∣x(i)
−t, z

(i)
)
≥ 2x2max

πeC4
2,τ

for all t ∈ [p] and i ∈ [n],

where the constant C2,τ was defined in (48).

Given this lemma, we proceed. We have

E
[(

[∆
(i)
t ]⊤x̃(i)

)2] (a)

≥ Var
[
[∆

(i)
t ]⊤x̃(i)

]
(b)
= Var

[
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

]
, (65)

where (a) follows from the fact that for any random variable a, E[a2] ≥ Var[a] and (b) follows because
we let Ωtt = 0 since Θ⋆

tt = 0. We define the following set to lower bound Var
[
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

]
:

E(Θ⋆) ≜
{
(t, u) ∈ [p]2 : t < u,Θ⋆

tu ̸= 0
}
, (66)

and consider the graph G(Θ⋆) = ([p], E(Θ⋆)) with [p] as nodes and E(Θ⋆) as edges such that
fx|z
(
x|z; θ⋆(z),Θ⋆

)
is Markov with respect to G(Θ⋆). We claim that there exists a non-empty set

Rt ⊂ [p] \ {t} such that

(i) Rt is an independent set of G(Θ⋆), i.e., there are no edges between any pair of nodes in Rt, and

(ii) the row vector Ωt satisfies
∑

u∈Rt
|Ωtu|2 ≥ 1

β/α+1 ∥Ωt∥
2
2.

Taking this claim as given at the moment, we continue our proof. Denoting Rct ≜ [p] \ Rt, and using
the law of total variance, the variance term in (65) can be lower bounded as

Var
[
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

]
≥ E

[
Var

[
ω
(i)
t x

(i)
t + 2Ω⊤

t x
(i)x

(i)
t

∣∣∣x(i)
Rc

t
, z(i)

]]
(a)
= 4E

[(
x
(i)
t

)2Var
( ∑
u∈Rt

Ωtux
(i)
u

∣∣∣x(i)
Rc

t
, z(i)

)]
(b)
= 4E

[(
x
(i)
t

)2 ∑
u∈Rt

Ω2
tuVar

(
x(i)u

∣∣∣x(i)
Rc

t
, z(i)

)]
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(c)
= 4E

[(
x
(i)
t

)2 ∑
u∈Rt

Ω2
tuVar

(
x(i)u

∣∣∣x(i)
−u, z

(i)
)]

(d)

≥ 8x2max

πeC4
2,τ

∑
u∈Rt

Ω2
tuE
[(
x
(i)
t

)2]
(e)

≥ 8x2max

πeC4
2,τ

∑
u∈Rt

Ω2
tuVar

(
x
(i)
t

∣∣∣x(i)
−t, z

(i)
)

(f)

≥ 16x4max

π2e2C8
2,τ

∑
u∈Rt

Ω2
tu

(ii)

≥
16x4max ∥Ωt∥

2
2

π2e2(β/α+ 1)C8
2,τ

, (67)

where (a) follows because (x
(i)
u )u∈Rc

t
are deterministic when conditioned on themselves, and t ∈ Rct ,

(b) follows because (x
(i)
u )u∈Rt are conditionally independent given x

(i)
Rc

t
and z(i) which is a direct

consequence of (i), (c) follows because of the local Markov property (as the conditioning set includes
all the neighbors in G(Θ⋆) of each node in Rt), (d) and (f) follow from Lemma. B.6, and (e) follows
because E

[(
x
(i)
t

)2]
= E

[
E
[(
x
(i)
t

)2∣∣∣x(i)
−t, z

(i)
]]
≥ Var

(
x
(i)
t

∣∣∣x(i)
−t, z

(i)
)
.

Combining (65) and (67), we have

Ex(i),z(i)

[(
[∆

(i)
t ]⊤x̃(i)

)2] ≥ 16x4max

π2e2(β/α+ 1)C8
2,τ

· ∥Ωt∥22.

It remains to construct the set Rt that is an independent set of G(Θ⋆) and satisifies (ii).

Construction of the set Rt For every u ∈ [p], let N (u) denote the set of neighbors of u in G(Θ⋆),
i.e., N (u) ≜ {v ∈ [p] : (u, v) ∈ E(Θ⋆)}

⋃
{v ∈ [p] : (v, u) ∈ E(Θ⋆)}. We start by selecting r1 ∈ [p]\{t}

such that

|Ωtr1 | ≥ |Ωtu| for all u ∈ [p] \ {t, r1} .

Next, we identify r2 ∈ [p] \ {t, r1,N (r1)} such that

|Ωtr2 | ≥ |Ωtu| for all u ∈ [p] \ {t, r1,N (r1), r2} .

We continue identifying r3, . . . , rs in such a manner till no more nodes are left, where s denotes
the total number of nodes selected. Now we define Rt ≜ {r1, · · · , rs}. For any u ∈ [p], we have
|N (u)| ≤ ∥Θ⋆

u∥0 ≤ β/α from (66) and Assumption. 1. Using this, we see that Rt is an independent
set of G(Θ⋆) as claimed in (i) such that it satisfies (ii) by construction.

B.2.1 Proof of Lemma. B.6: Lower bound on the conditional variance

For any random variable x , let h(x) denote the differential entropy of x . Fix any t ∈ [p] and i ∈ [n].
Then, from Shannon’s entropy inequality (2h(·) ≤ log

√
2πeVar(·)), we have

2πeVar
(
x
(i)
t

∣∣x(i)
−t, z

(i)
) (a)

≥ exp
(
2h
(
x
(i)
t

∣∣x(i)
−t, z

(i)
))
. (68)
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Therefore, to bound the variance, it suffices to bound the differential entropy. We have

− h
(
x
(i)
t

∣∣x(i)
−t, z

(i)
)
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t
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(
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t
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X exp
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(i)
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(i)
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ttx
(i)
t

)
dx

(i)
t

)
dx(i)dz(i)

(a)

≥
∫

X p×Zpz

fx,z(x
(i), z(i)) log

(
exp
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|θ⋆t (z(i))|+2∥Θ⋆

t ∥1∥x(i)∥∞
)
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)∫
X exp

(
−
(
|θ⋆t (z(i))|+2∥Θ⋆

t ∥1∥x(i)∥∞
)
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)
dx

(i)
t

)
dx(i)dz(i)

(b)

≥
∫

X p×Zpz

fx,z(x
(i), z(i)) log

(
exp

(
(α+ 2βxmax)xmax

)∫
X exp

(
− (α+ 2βxmax)xmax

)
dx

(i)
t

)
dx(i)dz(i)

(c)
=

∫
X p×Zpz

fx,z(x
(i), z(i)) log

(
C2
3,τ

2xmax

)
dx(i)dz(i)= log

(
C2
3,τ

2xmax

)
, (69)

where (a) follows from triangle inequality and Cauchy–Schwarz inequality and because ∥x(i)∥∞ ≤ xmax

for all i ∈ [n], (b) follows because θ⋆(z(i)) ∈ Λθ for all i ∈ [n], Θ⋆ ∈ ΛΘ, ∥x(i)∥∞ ≤ xmax for all
i ∈ [n], and (c) follows because

∫
X dx

(i)
t = 2xmax. Combining (68) and (69) completes the proof.

B.3 Proof of Lemma. B.2: Lipschitzness of the loss function

Consider any direction Ω = Θ̃−Θ. Now, define the function q : [0, 1]→ R as follows

q(a) = L
(
Θ+ a(Θ̃−Θ)

)
. (70)

Then, the desired inequality in (49) is equivalent to

|q(1)− q(0)| ≤ 2x2maxC2,τ

(∑
t∈[p]

∥Ωt∥1 +
1

n

∑
i∈[n]

∥ω(i)∥1
)
.

From the mean value theorem, there exists a′ ∈ (0, 1) such that

|q(1)− q(0)| =
∣∣∣∣dq(a′)da

∣∣∣∣ (70)
=
∣∣∣dL(Θ+ a(Θ̃−Θ)

)
da

∣∣∣ (57)
=
∣∣∣∂ΩL(Θ)

∣∣
Θ=Θ+a(Θ̃−Θ)

∣∣∣. (71)

Using (60) in (71), we can write∣∣q(1)−q(0)∣∣
=

1

n

∣∣∣∣∑
t∈[p]

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)

)
× exp

(
−
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θ
(i)
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(i)
t −θ

(i)
t )
)
+

2
(
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x
(i)
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]
x
(i)
t −

(
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x
(i)
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(a)

≤ exp
((

[(1−a′)α+a′α] + 2[(1−a′)β+a′β]xmax

)
xmax

) 1
n

∣∣∣∣∑
t∈[p]

∑
i∈[n]

(
[∆

(i)
t ]⊤x̃(i)

)∣∣∣∣
(b)

≤
2x2maxC2,τ

n

∑
t∈[p]

∑
i∈[n]

∥∆(i)
t ∥1

(c)
= 2x2maxC2,τ

(∑
t∈[p]

∥Ωt∥1 +
1

n

∑
i∈[n]

∥ω(i)∥1
)
,

where (a) follows from triangle inequality, Cauchy–Schwarz inequality, θ(i), θ̃(i) ∈ Λθ, Θ, Θ̃ ∈ ΛΘ,
and ∥x(i)∥∞ ≤ xmax for all i ∈ [n], (b) follows from (48), the triangle inequality, and because
∥x(i)∥∞ ≤ xmax for all i ∈ [n], and (c) follows from the definition of ∆(i)

t .

C Proof of Theorem 1 Part II: Recovering unit-level parameters

To analyze our estimate of the unit-level parameters, we use the estimate Θ̂ of the population-level
parameter Θ⋆ along with the associated guarantee provided in Theorem. 1 Part I. We note that
the constraints on the unit-level parameters in (14) are independent across units, i.e., θ(i) ∈ Λθ
independently for all i ∈ [n]. Therefore, we look at n independent convex optimization problems by
decomposing the loss function L in (13) and the estimate Θ̂ in (14) as follows: For i ∈ [n], we define

L(i)
(
θ(i)
)
≜
∑
t∈[p]

exp
(
− [θ

(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

)
and θ̂(i) ≜ argmin

θ(i)∈Λθ

L(i)
(
θ(i)
)
. (72)

Now, fix any i ∈ [n]. From (72), we have L(i)
(
θ̂(i)
)
≤ L(i)

(
θ⋆(i)

)
. Using contraposition, to prove

this part, it is sufficient to show that all points θ(i) ∈ Λθ that satisfy ∥θ(i) − θ⋆(i)∥2 ≥ R(ε, δ) also
uniformly satisfy

L(i)
(
θ(i)
)
≥ L(i)

(
θ⋆(i)

)
+R2(ε, δ) when n ≥ cec

′βp4

ε4

(
p log

p2

δε2
+ M̃θ,n(ε, δ)

)
, (73)

with probability at least 1− δ where R(ε, δ) was defined in (17) and M̃θ,n(ε, δ) was defined in (18).
Then, the guarantee in Theorem. 1 follows by applying a union bound over all i ∈ [n].

To that end, the lemma below, proven in Appendix. C.1, shows that for any fixed θ(i) ∈ Λθ, if θ(i) is
far from θ⋆(i), then with high probability L(i)

(
θ(i)
)

is significantly larger than L(i)
(
θ⋆(i)

)
.

Lemma C.1 (Gap between the loss function for a fixed parameter). Fix any ε > 0, δ ∈ (0, 1), and
i ∈ [n]. Then, for any θ(i) ∈ Λθ such that ∥θ(i) − θ⋆(i)∥2 ≥ εγ (see (17)), we have

L(i)
(
θ(i)
)
≥L(i)

(
θ⋆(i)

)
+
22.5βx4max

πeC5
2,τ

∥θ(i)−θ⋆(i)∥22 for n≥ ce
c′βp4

ε4

(
p log

p2

δε2
+Mθ,n

(ε2
p

))
,

with probability at least 1− δ − cβ2 log p · exp(−e−c′β∥θ(i) − θ⋆(i)∥22) where C2,τ was defined in (48).

Note. When we invoke Lemma. C.1, we ensure that cβ2 log p · exp(−e−c′β∥θ(i) − θ⋆(i)∥22) is of the
same order as δ.

Next, we show that the loss function L(i) is Lipschitz (see Appendix. C.2 for the proof).
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Lemma C.2 (Lipschitzness of the loss function). Consider any i ∈ [n]. Then, the loss function L(i)
is Lipschitz with respect to the ℓ1 norm ∥·∥1 and with Lipschitz constant xmaxC2,τ , i.e.,∣∣L(i)(θ̃(i))− L(i)(θ(i))∣∣ ≤ xmaxC2,τ∥θ̃(i) − θ(i)∥1 for all θ(i), θ̃(i) ∈ Λθ, (74)

where the constant C2,τ was defined in (48).

Given these lemmas, we now proceed with the proof.

Proof strategy We want to show that all points θ(i) ∈ Λθ, that satisfy ∥θ(i) − θ⋆(i)∥2 ≥ R(ε, δ),
uniformly satisfy (73) with probability at least 1− δ. To do so, we consider the set of points Λrθ ⊂ Λθ
whose distance from θ⋆(i) is at least r > 0 in ℓ2 norm. Then, using an appropriate covering set of Λrθ
and the Lipschitzness of L(i), we show that the value of L(i) at all points in Λrθ is uniformly Ω(r2)
larger than the value of L(i) at θ⋆(i) with high probability. Finally, we choose r small enough to make
the failure probability smaller than δ.

Arguments for points in the covering set Consider any r ≥ εγ (where γ is defined in (17))
and the set of elements Λrθ ≜

{
θ(i) ∈ Λθ : ∥θ⋆(i) − θ(i)∥2 ≥ r

}
. Let U(Λrθ, ε′) be the ε′-cover of the

smallest size for the set Λrθ with respect to ∥·∥1 (see Definition. 2) and let C(Λrθ, ε′) be the ε′-covering
number where

ε′ ≜
2
√
2βx3maxr

2

πeC6
2,τ

. (75)

Now, we argue by a union bound that the value of L(i) at all points in U(Λrθ, ε′) is uniformly Ω(r2)
larger than L(i)(θ⋆(i)) with high probability. For any θ(i) ∈ U(Λrθ, ε′), we have

∥θ⋆(i) − θ(i)∥2
(a)

≥ r, (76)

where (a) follows because U(Λrθ, ε′) ⊆ Λrθ. Now, applying Lemma. C.1 with ε 7→ε and δ 7→
δ/2C(Λrθ, ε′), we have

L(i)
(
θ(i)
)
≥ L(i)

(
θ⋆(i)

)
+

4
√
2βx4max

πeC5
2,τ

∥θ⋆(i) − θ(i)∥22
(76)
≥ L(i)

(
θ⋆(i)

)
+

4
√
2βx4maxr

2

πeC5
2,τ

,

with probability at least 1− δ/2C(Λrθ, ε′)− cβ2 log p · exp(−e−c
′β∥θ(i) − θ⋆(i)∥22) whenever

n ≥ cec
′βp4

ε4

(
p log

C(Λrθ, ε′) · p2

δε2
+Mθ,n

(ε2
p

))
. (77)

By applying the union bound over U(Λrθ, ε′), as long as n satisfies (77), we have

L(i)
(
θ(i)
)
≥ L(i)

(
θ⋆(i)

)
+

4
√
2βx4maxr

2

πeC5
2,τ

uniformly for every θ(i) ∈ U(Λrθ, ε′), (78)

with probability at least 1 − δ/2 − cβ2C(Λrθ, ε′) log p · exp(−e−c
′β∥θ(i) − θ⋆(i)∥22) which can lower

bounded by 1− δ/2− cβ2C(Λrθ, ε′) log p · exp(−e−c
′βr2) using (76).
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Arguments for points outside the covering set Next, we establish the claim (73) for an
arbitrary θ̃(i) ∈ Λrθ conditional on the event that (78) holds. Given a fixed θ̃(i) ∈ Λrθ, let θ(i) be
(one of) the point(s) in the U(Λrθ, ε′) that satisfies ∥θ(i) − θ̃(i)∥1 ≤ ε′ (there exists such a point by
Definition. 2) Then, the choices (75) and Lemma. C.2 put together imply that

L(i)
(
θ̃(i)
)
≥L(i)

(
θ(i)
)
−xmaxC2,τ∥θ(i)−θ̃(i)∥1≥ L(i)

(
θ(i)
)
− xmaxC2,τε

′

(75)
≥ L(i)

(
θ(i)
)
− 2
√
2βx4maxr

2

πeC5
2,τ

(78)
≥ L(i)

(
θ⋆(i)

)
+
2
√
2βx4maxr

2

πeC5
2,τ

,

It remains to bound sample size n and the failure probability δ.

Bounding n Using Λrθ ⊆ Λθ, we find that

C(Λrθ, ε′)
(a)

≤ C(Λθ, ε′). (79)

Putting together (75) and (79), the lower bound (77) can be replaced by

n ≥ cec
′βp4

ε4

(
p log

p2

δε2
+ pMθ

(
r2
)
+Mθ,n

(ε2
p

))
.

Bounding δ To bound the failure probability by δ, it is sufficient to chose r such that

δ ≥ δ/2 + cβ2C(Λrθ, ε′) log p · exp(−e−c
′βr2). (80)

From (79) and (80), it is sufficient to chose r such that

δ ≥ δ/2 + cβ2C(Λθ, ε′) log p · exp(−e−c
′βr2). (81)

Re-arranging and taking logarithm on both sides of (81) and using (75), we have

log δ ≥ c
[
log
(
β2 log p

)
+Mθ

( r2

cec′β

)
− e−c′βr2

]
. (82)

Finally, (82) holds whenever

r ≥ cec′β
√

log
β2 log p

δ
+Mθ(ce−c

′β).

Recalling that the choice of r was such that r ≥ εγ completes the proof.

C.1 Proof of Lemma. C.1: Gap between the loss function for a fixed parameter

Fix any ε > 0, any δ ∈ (0, 1), and any i ∈ [n]. Consider any direction ω(i) ∈ Rp along the parameter
θ(i), i.e.,

ω(i) = θ(i) − θ⋆(i). (83)
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We denote the first-order and the second-order directional derivatives of the loss function L(i) in (72)
along the direction ω(i) evaluated at θ(i) by ∂ω(i)(L(i)(θ(i))) and ∂2

[ω(i)]2
L(i)(θ(i)), respectively. Below,

we state a lemma (with proof divided across Appendix. C.1.1 and Appendix. C.1.2) that provides us
a control on ∂ω(i)(L(i)(θ⋆(i))) and ∂2

[ω(i)]2
L(i)(θ(i)). The assumptions of Lemma. C.1 remain in force.

Lemma C.3 (Control on first and second directional derivatives). For any fixed ε1, ε2 > 0, δ1 ∈ (0, 1),
i ∈ [n], θ(i) ∈ Λθ with ω(i) defined in (83), we have the following:

(a) Concentration of first directional derivative: We have

∣∣∂ω(i)(L(i)(θ⋆(i)))
∣∣ ≤ ε1∥ω(i)∥1+ε2∥ω(i)∥22 for n ≥

cec
′βp4

(
p log p2

δ1ε21
+Mθ,n

( ε21
p

))
ε41

,

with probability at least 1− δ1 −O
(
β2 log p exp

(
−ε22∥ω(i)∥22

ec′β

))
.

(b) Anti-concentration of second directional derivative: We have

∂2
[ω(i)]2

L(i)(θ(i)) ≥ 32
√
2βx4max

πeC5
2,τ

∥ω(i)∥22,

with probability at least 1−O
(
β2 log p exp

(
−∥ω(i)∥22
ec′β

))
where C2,τ was defined in (48).

Given this lemma, we now proceed with the proof. Define a function g : [0, 1]→ Rp as follows

g(a) = θ⋆(i) + a(θ(i) − θ⋆(i)).

Notice that g(0) = θ⋆(i) and g(1) = θ(i) as well as

dL(i)(g(a))
da

= ∂ω(i)(L(i)(θ̃(i)))
∣∣
θ̃(i)=g(a)

and
d2L(i)(g(a))

da2
= ∂2

[ω(i)]2
L(i)(θ̃(i))

∣∣
θ̃(i)=g(a)

. (84)

By the fundamental theorem of calculus, we have

dL(i)(g(a))
da

≥ dL(i)(g(a))
da

∣∣
a=0

+ a min
a∈(0,1)

d2L(i)(g(a))
da2

. (85)

Integrating both sides of (85) with respect to a, we obtain

L(i)(g(a))−L(i)(g(0)) ≥ adL
(i)(g(a))

da

∣∣
a=0

+
a2

2
min
a∈(0,1)

d2L(i)(g(a))
da2

(84)
= a∂ω(i)(L(i)(θ̃(i)))

∣∣
θ̃(i)=g(0)

+
a2

2
min
a∈(0,1)

∂2
[ω(i)]2

L(i)(θ̃(i))
∣∣
θ̃(i)=g(a)

(a)
= a∂ω(i)(L(i)(θ⋆(i)))+

a2

2
min
a∈(0,1)

∂2
[ω(i)]2

L(i)(θ̃(i))
∣∣
θ̃(i)=g(a)

(b)

≥ −a
∣∣∂ω(i)(L(i)(θ⋆(i)))

∣∣+ a2

2
min
a∈(0,1)

∂2
[ω(i)]2

L(i)(θ̃(i))
∣∣
θ̃(i)=g(a)

, (86)
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where (a) follows because g(0) = θ⋆(i), and (b) follows by the triangle inequality. Plugging in a = 1
in (86) as well as using g(0) = θ⋆(i) and g(1) = θ(i), we find that

L(i)(θ(i))− L(i)(θ⋆(i)) ≥ −
∣∣∂ω(i)(L(i)(θ⋆(i)))

∣∣+ 1

2
min
a∈(0,1)

∂2
[ω(i)]2

L(i)(θ̃(i))
∣∣
θ̃(i)=g(a)

.

Now, we use Lemma. C.3 with ε1 7→4
√
2βx4maxε/πeC

5
2,τ , ε2 7→8

√
2βx4max/πeC

5
2,τ , and δ1 7→δ.

Therefore, with probability at least 1 − δ − O

(
β2 log p exp

(
−∥ω(i)∥22
ec′β

))
and as long as n ≥

O

(
ec

′βp4
(
p log p2

δ +Mθ,n

(
ε2

p

))
ε4

)
, we have

L(i)(θ(i))−L(i)(θ⋆(i))≥−22.5βx4maxε

πeC5
2,τ

∥ω(i)∥1−
23.5βx4max

πeC5
2,τ

∥ω(i)∥22+
24.5βx4max

πeC5
2,τ

∥ω(i)∥22

= −22.5βx4maxε

πeC5
2,τ

∥ω(i)∥1 +
23.5βx4max

πeC5
2,τ

∥ω(i)∥22

(17)
≥ −22.5βx4maxεγ

πeC5
2,τ

∥ω(i)∥2 +
23.5βx4max

πeC5
2,τ

∥ω(i)∥22

(a)

≥−2
2.5βx4max

πeC5
2,τ

∥ω(i)∥22+
23.5βx4max

πeC5
2,τ

∥ω(i)∥22=
22.5βx4max

πeC5
2,τ

∥ω(i)∥22,

where (a) follows because ∥ω(i)∥2 = ∥θ(i) − θ⋆(i)∥2 ≥ εγ according to the lemma statement.

C.1.1 Proof of Lemma. C.3(a): Concentration of first directional derivative

Fix some i ∈ [n] and some θ(i) ∈ Λθ. Let ω(i) be as defined in (83). We claim that the first-order
directional derivative of L(i) defined in (72) is given by

∂ω(i)(L(i)(θ(i))) = −
∑
t∈[p]

ω
(i)
t x

(i)
t exp

(
− [θ

(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

)
. (87)

We provide a proof at the end. For now, we assume the claim and proceed.
We note that the pair {x, z} corresponds to a τ-Sgm (see Definition. G.1) with τ ≜ (α, β, xmax,Θ).

To show the concentration, we use Proposition. G.1 (see Appendix. G) with λ = 1
4
√
2x2max

, decompose

∂ω(i)(L(i)(θ⋆(i))) as a sum of L = 1024β2x4max log 4p, and focus on these L terms. Consider the L
subsets S1, · · · , SL ∈ [p] obtained from Proposition. G.1 with λ = 1

4
√
2x2max

and define

ψu(x
(i);ω(i)) ≜

∑
t∈Su

ω
(i)
t x

(i)
t exp

(
−[θ⋆(i)t +2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t −Θ̂ttx

(i)
t

)
for every u ∈ L. (88)

Now, we decompose ∂ω(i)(L(i)(θ⋆(i))) as a sum of the L terms defined above. More precisely, we have

∂ω(i)(L(i)(θ⋆(i)))
(87)
= −

∑
t∈[p]

ω
(i)
t x

(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

)
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(a)
= − 1

L′

∑
u∈[L]

∑
t∈Su

ω
(i)
t x

(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

)
(88)
= − 1

L′

∑
u∈[L]

ψu(x
(i);ω(i)), (89)

where (a) follows because each t ∈ [p] appears in exactly L′ = ⌈L/32
√
2βx2max⌉ of the sets S1, · · · , SL

according to Proposition. G.1(a) (with λ = 1
4
√
2x2max

). Now, we focus on the L terms in (89).

Consider any u ∈ [L]. We claim that conditioned on x
(i)
−Su

and z(i), the expected value of ψu(x(i);ω(i))
can be upper bounded uniformly across all u ∈ [L]. We provide a proof at the end.

Lemma C.4 (Upper bound on expected ψu). Fix ε > 0, δ ∈ (0, 1), i ∈ [n] and θ(i) ∈ Λθ. Then, with
ω(i) defined in (83) and given z(i) and x

(i)
−Su

for all u ∈ [L], we have

max
u∈[L]

E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]
≤ ε∥ω(i)∥1 for n ≥

cec
′βp4

(
p log p2

δε2
+Mθ,n

(
ε2

p

))
ε4

,

with probability at least 1− δ.

Consider again any u ∈ [L]. Now, we claim that conditioned on x
(i)
−Su

and z(i), ψu(x(i);ω(i))
concentrates around its conditional expected value. We provide a proof at the end.

Lemma C.5 (Concentration of ψu). Fix ε > 0, i ∈ [n], u ∈ [L], and θ(i) ∈ Λθ. Then, with ω(i)

defined in (83) and given z(i) and x
(i)
−Su

, we have∣∣∣ψu(x(i);ω(i))− E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]∣∣∣ ≤ ε,
with probability at least 1− exp

(
−ε2

ec′β∥ω(i)∥22

)
.

Given these lemmas, we proceed to show the concentration of ∂ω(i)(L(i)(θ⋆(i))). To that end, for any
u ∈ [L], given x

(i)
−Su

and z(i), let Eu denote the event that

ψu(x
(i);ω(i)) ≤ E

[
ψu(x

(i);ω(i))|x(i)
−Su

, z(i)
]
+

1

32
√
2βx2max

ε2∥ω(i)∥22. (90)

Since Eu in an indicator event, using the law of total expectation results in

P(Eu) = E
[
P(Eu|x(i)

−Su
, z(i))

] (a)

≥ 1− exp

(
−ε22∥ω(i)∥22

ec′β

)
.

where (a) follows from Lemma. C.5 with ε 7→ε2∥ω
(i)∥22

32
√
2βx2max

. Now, by applying the union bound over

all u ∈ [L] where L = 1024β2x4max log 4p, we have

P
( ⋂
u∈L

Eu

)
≥ 1−O

(
β2 log p exp

(
−ε22∥ω(i)∥22

ec′β

))
.
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Now, assume the event ∩u∈LEu holds. Whenever this holds, we also have

∣∣∂ω(i)(L(i)(θ⋆(i)))
∣∣ (89)
≤ 1

L′

∑
u∈[L]

∣∣ψu(x(i);ω(i))
∣∣

(90)
≤ 1

L′

∑
u∈[L]

∣∣∣E[ψu(x(i);ω(i))|x(i)
−Su

, z(i)
]
+

1

32
√
2βx2max

ε2∥ω(i)∥22
∣∣∣, (91)

where L′ = ⌈L/32
√
2βx2max⌉. Further, using Lemma. C.4 in (91) with ε 7→ ε1

32
√
2βx2max

and δ 7→δ1,

whenever

n ≥
cec

′β · p4
(
p log p2

δ1ε21
+Mθ,n

( ε21
p

))
ε41

,

with probability at least 1− δ1, we have,∣∣∂ω(i)(L(i)(θ⋆(i)))
∣∣ ≤ 1

L′

∑
u∈[L]

( 1

32
√
2βx2max

ε1∥ω(i)∥1 +
1

32
√
2βx2max

ε2∥ω(i)∥22
)

=
L

32
√
2βx2maxL

′

(
ε1∥ω(i)∥1+ε2∥ω(i)∥22

) (a)

≤ ε1∥ω(i)∥1+ε2∥ω(i)∥22,

where (a) follows because L′ = ⌈L/32
√
2βx2max⌉.

Proof of (87): Expression for first directional derivative Fix any i ∈ [n]. The first-order
partial derivatives of L(i) (defined in (72)) with respect to the entries of the parameter vector θ(i) are
given by

∂L(i)(θ(i))
∂θ

(i)
t

= −x(i)t exp
(
− [θ

(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

)
for all t ∈ [p].

Now, we can write the first-order directional derivative of L(i) as

∂ω(i)(L(i)(θ(i))) ≜ lim
h→0

L(i)(θ(i) + hω(i))− L(i)(θ(i))
h

=
∑
t∈[p]

ω
(i)
t

∂L(i)(θ(i))
∂θ

(i)
t

= −
∑
t∈[p]

ω
(i)
t x

(i)
t exp

(
− [θ

(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

)
.

Proof of Lemma. C.4: Upper bound on expected ψu Fix any i ∈ [n], u ∈ [L], and θ(i) ∈ Λθ.
Then, given x

(i)
−Su

and z(i), we have

E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]
(a)
= E

[ ∑
t∈Su

ω
(i)
t x

(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

) ∣∣∣ x(i)
−Su

, z(i)
]
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(b)
=
∑
t∈Su

ω
(i)
t E

[
x
(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

) ∣∣∣ x(i)
−Su

, z(i)
]

(c)
=
∑
t∈Su

ω
(i)
t E

[
E
[
x
(i)
t exp

(
−[θ⋆(i)t +2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t −Θ̂ttx

(i)
t

)∣∣∣x(i)
−t, z

(i)
]∣∣∣∣ x(i)

−Su
, z(i)

]
, (92)

where (a) follows from the definition of ψu(x(i);ω(i)) in (88), (b) follows from linearity of expectation,
and (c) follows from the law of total expectation, i.e., E[E[Y |X,Z]|Z] = E[Y |Z] since x

(i)
−Su
⊆ x

(i)
−t.

Now, we bound E
[
x
(i)
t exp

(
−[θ⋆(i)t +2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t −Θ̂ttx

(i)
t

)∣∣x(i)
−t, z

(i)
]
for every t ∈ Su. We have

E
[
x
(i)
t exp

(
−[θ⋆(i)t +2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t −Θ̂ttx

(i)
t

)∣∣∣x(i)
−t, z

(i)
]

=

∫
X

x
(i)
t exp

(
−[θ⋆(i)t +2Θ̂⊤

t,−tx
(i)
−t ]x

(i)
t −Θ̂ttx

(i)
t

)
fxt|x−t,z

(
x
(i)
t |x

(i)
−t , z

(i); θ⋆t (z
(i)),Θ⋆

t

)
dx

(i)
t

(a)
=

∫
X x

(i)
t exp

(
2[Θ⋆

t,−t − Θ̂t,−t]
⊤x

(i)
−tx

(i)
t + [Θ⋆

tt − Θ̂tt]x
(i)
t

)
dx

(i)
t∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤
t,−tx

(i)
−t]x

(i)
t +Θ⋆

ttx
(i)
t

)
dx

(i)
t

(b)
=

∫
X x

(i)
t

[
1 + 2[Θ⋆

t,−t−Θ̂t,−t]
⊤x

(i)
−tx

(i)
t + [Θ⋆

tt−Θ̂tt]x
(i)
t

]
dx

(i)
t∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤
t,−tx

(i)
−t]x

(i)
t +Θ⋆

ttx
(i)
t

)
dx

(i)
t

+

∫
X x

(i)
t

[
o
(
[Θ⋆

t,−t−Θ̂t,−t]
⊤x

(i)
−tx

(i)
t + [Θ⋆

tt−Θ̂tt]x
(i)
t

)2]
dx

(i)
t∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤
t,−tx

(i)
−t]x

(i)
t +Θ⋆

ttx
(i)
t

)
dx

(i)
t

(c)
=

4x3max[Θ
⋆
t,−t − Θ̂t,−t]

⊤x
(i)
−t

3
∫
X exp

(
[θ⋆t (z

(i)) + 2Θ⋆⊤
t,−tx

(i)
−t]x

(i)
t +Θ⋆

ttx
(i)
t

)
dx

(i)
t

+
x5max

(
[Θ⋆

t,−t − Θ̂t,−t]
⊤x

(i)
−t
)(
Θ⋆
tt−Θ̂tt

)
o(1)∫

X exp
(
[θ⋆t (z

(i)) + 2Θ⋆⊤
t,−tx

(i)
−t]x

(i)
t +Θ⋆

ttx
(i)
t

)
dx

(i)
t

, (93)

where (a) follows from (12) and θ⋆(i) = θ⋆(z(i)) ∀i ∈ [n], (b) follows by using the Taylor series
expansion exp(y) = 1 + y + o(y2) around zero, (c) follows because

∫
X x

(i)
t dx

(i)
t =

∫
X x

(i)
t x

(i)
t dx

(i)
t =∫

X
(
x
(i)
t

)3
dx

(i)
t =

∫
X x

(i)
t

(
x
(i)
t

)2
dx

(i)
t = 0,

∫
X
(
x
(i)
t

)2
dx

(i)
t = 2x3max/3, and

∫
X
(
x
(i)
t

)2
x
(i)
t dx

(i)
t =

8x5max/45.
Now, we bound the numerators in (93) by using ∥Θ⋆

t − Θ̂t∥1 ≤
√
p∥Θ⋆

t − Θ̂t∥2. Then, we invoke
Theorem. 1 to bound ∥Θ⋆

t − Θ̂t∥2 by ε 7→ 3ε
2C2,τx

3
max

√
p
. Therefore, we subsume the second term by

the first term resulting in the following bound:

E
[
x
(i)
t exp

(
−[θ⋆(i)t +2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t −Θ̂ttx

(i)
t

)∣∣x(i)
−t, z

(i)
]
≤
2C2,τx

3
max
√
p∥Θ⋆

t−Θ̂t∥2
3

, (94)

where we have used the triangle inequality, ∥x(i)∥∞ ≤ xmax for all i ∈ [n] as well as ∥Θ⋆
t − Θ̂t∥1 ≤√

p∥Θ⋆
t − Θ̂t∥2 to upper bound the numerator, and the arguments used in the proof of Lemma. B.6

as well as
∫
X dx

(i)
t = 2xmax to lower bound the denominator.
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Using Theorem. 1 in (94) with ε 7→ 3ε

2C2,τx
3
max
√
p

and δ 7→δ, we have

E
[
x
(i)
t exp

(
− [θ

⋆(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

) ∣∣∣ x(i)
−t, z

(i)
]
≤ ε, (95)

with probability at least 1− δ as long as

n ≥
cec

′β · p4
(
p log p2

δε2
+Mθ,n

(
ε2

p

))
ε4

. (96)

Using (95) and triangle inequality in (92), we have

E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]
≤ ε

∑
t∈Su

∣∣ω(i)
t

∣∣ ≤ ε∥ω(i)∥1,

with probability at least 1− δ as long as n satisfies (96).

Proof of Lemma. C.5: Concentration of ψu To show this concentration result, we use
Corollary. H.1 (187) for the function q2. To that end, we note that the pair {x, z} corresponds to a
τ-Sgm (Definition. G.1) with τ ≜ (α, β, xmax,Θ). However, the random vector x conditioned on z
need not satisfy the Dobrushin’s uniqueness condition (Definition. F.2). Therefore, we cannot apply
Corollary. H.1 (187) as is. To resolve this, we resort to Proposition. G.1 with λ = 1

4
√
2x2max

to reduce
the random vector x conditioned on z to Dobrushin’s regime.

Fix any u ∈ [L]. Then, from Proposition. G.1(b), (i) the pair of random vectors {xSu , (x−Su , z)}
corresponds to a τ1-Sgm with τ1 ≜ (α+2βxmax,

1
4
√
2x2max

, xmax,ΘSu), and (ii) the random vector xSu

conditioned on (x−Su , z) satisfies the Dobrushin’s uniqueness condition (Definition. F.2) with coupling
matrix 2

√
2x2max|ΘSu | with 2

√
2x2max||||ΘSu ||||op ≤ 2

√
2x2maxλ ≤ 1/2. Now, for any fixed i ∈ [n], we

apply Corollary. H.1 (187) for the function q2 with ε 7→ε for a given x
(i)
−Su

and z(i), to obtain

P
(∣∣∣ψu(x(i);ω(i))− E

[
ψu(x

(i);ω(i))
∣∣∣ x(i)

−Su
, z
]∣∣∣ ≥ ε ∣∣∣ x(i)

−Su
, z

)
≤ exp

(
−ε2

ec′β∥ω(i)∥22

)
.

C.1.2 Proof of Lemma. C.3(b): Anti-concentration of second directional derivative

Fix some i ∈ [n] and some θ(i) ∈ Λθ. Let ω(i) be as defined in (83). We claim that the second-order
directional derivative of L(i) defined in (72) is given by

∂2
[ω(i)]2

L(i)(θ(i)) =
∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2
exp

(
− [θ

(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

)
. (97)

We provide a proof at the end. For now, we assume the claim and proceed. Now, we lower bound
∂2
[ω(i)]2

L(i)(θ(i)) by a quadratic form as follows

∂2
[ω(i)]2

L(i)(θ(i))
(a)

≥
∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 × exp
(
−
(
|θ(i)t |+2∥Θ̂t∥1∥x(i)∥∞

)
xmax

)
(b)

≥
∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 × exp
(
−(α+2βxmax)xmax

) (48)
=

1

C2,τ

∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2
, (98)
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where (a) follows from (97) by triangle inequality, Cauchy–Schwarz inequality, and because ∥x(i)∥∞ ≤
xmax for all i ∈ [n], and (b) follows because Θ̂ ∈ ΛΘ, θ(i) ∈ Λθ, and ∥x(i)∥∞ ≤ xmax for all i ∈ [n].

Now, to show the anti-concentration of ∂2
[ω(i)]2

L(i)(θ(i)), we show the anti-concentration of the
quadratic form in (98). To that end, we note that the pair {x, z} corresponds to a τ-Sgm
(Definition. G.1) with τ ≜ (α, β, xmax,Θ). Then, we decompose the quadratic form in (98) as
a sum of L = 1024β2x4max log 4p terms using Proposition. G.1 (see Appendix. G) with λ = 1

4
√
2x2max

and focus on these L terms. Consider the L subsets S1, · · · , SL ∈ [p] obtained from Proposition. G.1
and define

ψu(x
(i);ω(i)) ≜

∑
t∈Su

(
ω
(i)
t x

(i)
t

)2 for every u ∈ L. (99)

Then, we have ∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 (a)
=

1

L′

∑
u∈[L]

∑
t∈Su

(
ω
(i)
t x

(i)
t

)2 (99)
=

1

L′

∑
u∈[L]

ψu(x
(i);ω(i)), (100)

where (a) follows because each t ∈ [p] appears in exactly L′ = ⌈L/32
√
2βx2max⌉ of the sets S1, · · · , SL

according to Proposition. G.1(a) (with λ = 1
4
√
2x2max

). Now, we focus on the L terms in (100).

Consider any u ∈ [L]. We claim that conditioned on x
(i)
−Su

and z(i), the expected value of ψu(x(i);ω(i))
can be upper bounded uniformly across all u ∈ [L]. We provide a proof at the end.

Lemma C.6 (Lower bound on expected ψu). Fix i ∈ [n] and θ(i) ∈ Λθ. Then, with ω(i) defined in
(83) and given z(i) and x

(i)
−Su

, we have

min
u∈[L]

E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]
≥ 2x2max

πeC4
2,τ

∥ω(i)∥22,

where the constant C2,τ was defined in (48).

Consider again any u ∈ [L]. Now, we claim that conditioned on x
(i)
−Su

and z(i), ψu(x(i);ω(i))
concentrates around its conditional expected value. We provide a proof at the end.

Lemma C.7 (Concentration of ψu). Fix ε > 0, i ∈ [n], u ∈ [L], and θ(i) ∈ Λθ. Then, with ω(i)

defined in (83) and given z(i) and x
(i)
−Su

, we have∣∣∣ψu(x(i);ω(i))− E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

]∣∣∣ ≤ ε,
with probability at least 1− exp

(
−ε2

ec′β∥ω(i)∥22

)
.

Given these lemmas, we proceed to show the anti-concentration of the quadratic form in (98) implying
the anti-concentration of ∂2

[ω(i)]2
L(i)(θ(i)). To that end, for any u ∈ [L], given x

(i)
−Su

and z(i), let Eu
denote the event that

ψu(x
(i);ω(i)) ≥ E

[
ψu(x

(i);ω(i))|x(i)
−Su

, z(i)
]
− x2max

πeC4
2,τ

∥ω(i)∥22. (101)
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Since Eu in an indicator event, using the law of total expectation results in

P(Eu) = E
[
P(Eu|x(i)

−Su
, z(i))

] (a)

≥ 1− exp

(
∥ω(i)∥22
ec′β

)
,

where (a) follows from Lemma. C.7 with ε 7→x
2
max

πeC4
2,τ

∥ω(i)∥22. Now, by applying the union bound

over all u ∈ [L] where L = 1024β2x4max log 4p, we have

P
( ⋂
u∈L

Eu

)
≥ 1−O

(
β2 log p exp

(
∥ω(i)∥22
ec′β

))
.

Now, assume the event ∩u∈LEu holds. Whenever this holds, we also have∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 (100)
=

1

L′

∑
u∈[L]

ψu(x
(i);ω(i))

(101)
≥ 1

L′

∑
u∈[L]

(
E
[
ψu(x

(i);ω(i))|x(i)
−Su

, z(i)
]
− x2max

πeC4
2,τ

∥ω(i)∥22
)

(a)

≥ 1

L′

∑
u∈[L]

x2max

πeC4
2,τ

∥ω(i)∥22 =
x2maxL

πeL′C4
2,τ

∥ω(i)∥22, (102)

where L′ = ⌈L/32
√
2βx2max⌉ and (a) follows from Lemma. C.6. Finally, approximating L′ =

L/32
√
2βx2max and using (98), we have

∂2
[ω(i)]2

L(i)(θ(i)) ≥ 1

C2,τ

∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2 (102)
≥ 32

√
2βx4max

πeC5
2,τ

∥ω(i)∥22,

which completes the proof.

Proof of (97): Expression for second directional derivative Fix any i ∈ [n]. The second-order
partial derivatives of L(i) (defined in (72)) with respect to the entries of the parameter vector θ(i) are
given by

∂2L(i)(θ(i))
∂
[
θ
(i)
t

]2 =
[
x
(i)
t

]2
exp

(
− [θ

(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

)
for all t ∈ [p].

Now, we can write the second-order directional derivative of L(i) as

∂2
[ω(i)]2

L(i)(θ(i)) ≜ lim
h→0

∂ω(i)L(i)(θ(i) + hω(i))−∂ω(i)L(i)(θ(i))
h

=
∑
t∈[p]

[
ω
(i)
t

]2∂2L(i)(θ(i))
∂
[
θ
(i)
t

]2
=
∑
t∈[p]

(
ω
(i)
t x

(i)
t

)2
exp

(
− [θ

(i)
t + 2Θ̂⊤

t,−tx
(i)
−t]x

(i)
t − Θ̂ttx

(i)
t

)
.
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Proof of Lemma. C.6: Lower bound on expected ψu Fix any i ∈ [n], u ∈ [L], and θ(i) ∈ Λθ.
Then, given x

(i)
−Su

and z(i), we have

E
[
ψu(x

(i);ω(i))
∣∣ x(i)

−Su
, z(i)

] (99)
= E

[ ∑
t∈Su

(
ω
(i)
t x

(i)
t

)2 ∣∣ x(i)
−Su

, z(i)
]

(a)
=
∑
t∈Su

E
[(
ω
(i)
t x

(i)
t

)2 ∣∣ x(i)
−Su

, z(i)
]

(b)
=
∑
t∈Su

E
[
E
[(
ω
(i)
t x

(i)
t

)2∣∣∣x(i)
−t, z

(i)
] ∣∣∣ x(i)

−Su
, z(i)

]
(c)

≥
∑
t∈Su

E
[
Var

(
ω
(i)
t x

(i)
t

∣∣∣x(i)
−t, z

(i)
) ∣∣∣ x(i)

−Su
, z(i)

]
(d)

≥ 2x2max

πeC4
2,τ

∥ω(i)∥22,

where (a) follows from linearity of expectation, (b) follows from the law of total expectation i.e.,
E[E[Y |X,Z]|Z] = E[Y |Z] since x

(i)
−Su
⊆ x

(i)
−t, (c) follows follows from the fact that for any random

variable a, E[a2] ≥ Var[a], and (d) follows from Lemma. B.6.

Proof of Lemma. C.7: Concentration of ψu To show this concentration result, we use
Corollary. H.1 (187) for the function q1. To that end, we note that the pair {x, z} corresponds to a
τ-Sgm (Definition. G.1) with τ ≜ (α, β, xmax,Θ). However, the random vector x conditioned on z
need not satisfy the Dobrushin’s uniqueness condition (Definition. F.2). Therefore, we cannot apply
Corollary. H.1 (187) as is. To resolve this, we resort to Proposition. G.1 with λ = 1

4
√
2x2max

to reduce
the random vector x conditioned on z to Dobrushin’s regime.

Fix any u ∈ [L]. Then, from Proposition. G.1(b), (i) the pair of random vectors {xSu , (x−Su , z)}
corresponds to a τ1-Sgm with τ1 ≜ (α+2βxmax,

1
4
√
2x2max

, xmax,ΘSu), and (ii) the random vector xSu

conditioned on (x−Su , z) satisfies the Dobrushin’s uniqueness condition (Definition. F.2) with coupling
matrix 2

√
2x2max|ΘSu | with 2

√
2x2max||||ΘSu ||||op ≤ 2

√
2x2maxλ ≤ 1/2. Now, for any fixed i ∈ [n], we

apply Corollary. H.1 (187) for the function q1 with ε = ε for a given x
(i)
−Su

and z(i), to obtain

P
(∣∣∣ψu(x(i);ω(i))−E

[
ψu(x

(i);ω(i))
∣∣∣ x(i)

−Su
, z(i)

]∣∣∣ ≥ ε ∣∣∣ x(i)
−Su

, z(i)

)
≤ exp

(
−ε2

ec′β∥ω(i)∥22

)
.

C.2 Proof of Lemma. C.2: Lipschitzness of the loss function

Fix any i ∈ [n], any θ(i), θ̃(i) ∈ Λθ. Consider the direction ω(i) = θ̃(i) − θ(i), and define the function
q : [0, 1]→ R as follows

q(a) = L(i)
(
θ(i) + a(θ̃(i) − θ(i))

)
. (103)

Then, the desired inequality in (74) is equivalent to

|q(1)− q(0)| ≤ xmaxC2,τ∥ω(i)∥1.
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From the mean value theorem, there exists a′ ∈ (0, 1) such that

|q(1)− q(0)| =
∣∣∣∣dq(a′)da

∣∣∣∣. (104)

Therefore, we have

∣∣q(1)− q(0)∣∣ (104)
=

∣∣∣∣dq(a′)da

∣∣∣∣ (103)
=
∣∣∣dL(i)(θ(i) + a′(θ̃(i) − θ(i))

)
da

∣∣∣
(84)
=
∣∣∣∂ω(i)(L(i)(θ(i)))

∣∣
θ(i)=θ(i)+a′(θ̃(i)−θ(i))

∣∣∣. (105)

Using (87) in (105), we have∣∣q(1)− q(0)∣∣ = ∣∣∣∑
t∈[p]

ω
(i)
t x

(i)
t exp

(
− [θ

(i)
t + a′(θ̃

(i)
t − θ

(i)
t ) + 2Θ̂⊤

t,−tx
(i)
t ]x

(i)
t − Θ̂ttx

(i)
t

)∣∣∣
(a)

≤ xmax

∑
t∈[p]

∣∣ω(i)
t

∣∣ exp([∣∣(1− a′)θ(i)t ∣∣+ ∣∣a′θ̃(i)t ∣∣+ 2∥Θ̂t∥1∥x(i)∥∞
]
xmax

)
(b)

≤ xmax exp
((

(1− a′)α+ a′α+ 2βxmax

)
xmax

)∑
t∈[p]

∣∣ω(i)
t

∣∣
(48)
= xmaxC2,τ∥ω(i)∥1,

where (a) follows from triangle inequality, Cauchy–Schwarz inequality, and because ∥x(i)∥∞ ≤ xmax

for all i ∈ [n] and (b) follows because θ(i), θ̃(i) ∈ Λθ, Θ̂ ∈ ΛΘ, and ∥x(i)∥∞ ≤ xmax for all i ∈ [n].

D Proof of Theorem 2: Guarantee on quality of outcome estimate

Fix any unit i ∈ [n] and an alternate intervention ã(i) ∈ Apa . Then, we have

µ(i)(ã(i))
(8)
= E[y(i)(ã(i))|z = z(i), v = v(i)]

(a)
= E[y|a = ã(i), z = z(i), v = v(i)],

where (a) follows because the unit-level counterfactual distribution is equivalent to unit-level
conditional distribution under the causal framework considered as described in Section. 3.1. To
obtain a convenient expression for E[y|a = ã(i), z = z(i), v = v(i)], we identify Φ⋆(u,y) ∈ Rpu×py to
be the component of Θ⋆ corresponding to u and y for all u ∈ {v, a, y} and θ⋆(i,y) ∈ Rpy to be the
component of θ⋆(i) corresponding to y. Then, the conditional distribution of y as a function of the
interventions a, while keeping v and z fixed at the corresponding realizations for unit i, i.e., v(i) and
z(i), respectively, can be written as

f
(i)
y|a(y|a) ∝ exp

([
θ⋆(i,y) + 2v(i)⊤Φ⋆(v,y) + 2a⊤Φ⋆(a,y)

]
y + y⊤Φ⋆(y,y)y

)
. (106)

Therefore, we have

E[y|a = ã(i), z = z(i), v = v(i)] = E
f
(i)
y|a
[y|a = ã(i)].
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Now, consider the pu dimensional random vector u supported on X pu with distribution fu parameterized
by ψ ∈ Rpy and Ψ ∈ Rpy×py as follows

fu(u|ψ,Ψ) ∝ exp(ψ⊤u+ u⊤Ψu). (107)

Then, note that f̂ (i)y|a(y|a) in (15) and f (i)y|a(y|a) in (106) belong to the set {fu(·|ψ,Ψ) : ψ ∈ Rpy ,Ψ ∈
Rpy×py} for some ψ and Ψ. Now, we consider any two distributions in this set, namely fu(u|ψ̂, Ψ̂)
and fu(u|ψ⋆,Ψ⋆). Then, we claim that the two norm of the difference of the mean vectors of these
distributions is bounded as below. We provide a proof at the end.

Lemma D.1 (Perturbation in the mean vector). For any ψ ∈ Rpy and Ψ ∈ Rpy×py , let µψ,Ψ(u) ∈ Rpu
and Covψ,Ψ(u, u) ∈ Rpu×pu denote the mean vector and the covariance matrix of u, respectively, with
respect to fu in (107). Then, for any ψ̂, ψ⋆ ∈ Rpy and Ψ̂,Ψ⋆ ∈ Rpy×py , there exists some t ∈ (0, 1),
ψ̃ ≜ tψ̂ + (1− t)ψ⋆ and Ψ̃ ≜ tψ̃ + (1− t)ψ̃ such that

∥µ
ψ̂,Ψ̂

(u)− µψ⋆,Ψ⋆(u)∥2 ≤ |||Cov
ψ̃,Ψ̃

(u,u)|||op∥(ψ̂ − ψ⋆)∥2

+
∑
t3∈[p]

|||Cov
ψ̃,Ψ̃

(u, ut3u)|||op∥(Ψ̂t3−Ψ⋆
t3)∥2.

Given this lemma, we proceed with the proof. By applying this lemma to f̂ (i)y|a(y|a) in (15) and

f
(i)
y|a(y|a) in (106), we see that it is sufficient to show the following bound

∥(θ⋆(i,y) − θ̂(i,y)) + 2v(i)⊤(Φ⋆(v,y) − Φ̂(v,y)) + 2ã(i)⊤(Φ⋆(a,y) − Φ̂(a,y))∥2
+
∑
t∈[py ]

∥Φ⋆(y,y)t − Φ̂
(y,y)
t ∥2 ≤ R(ε, δ/n) + pε.

To that end, we have

∑
t∈[py ]

∥Φ⋆(y,y)t − Φ̂
(y,y)
t ∥2

(a)

≤
∑
t∈[py ]

∥Θ⋆
t − Θ̂t∥2, (108)

where (a) follows because ℓ2 norm of any sub-vector is no more than ℓ2 norm of the vector. Similarly,
we have

∥(θ⋆(i,y)−θ̂(i,y))+2v(i)⊤(Φ⋆(v,y)−Φ̂(v,y))+2ã(i)⊤(Φ⋆(a,y)−Φ̂(a,y))∥2
(a)

≤ ∥θ⋆(i,y)−θ̂(i,y)∥2+2∥v(i)⊤(Φ⋆(v,y)−Φ̂(v,y))∥2+2∥ã(i)⊤(Φ⋆(a,y)−Φ̂(a,y))∥2
(b)

≤ ∥θ⋆(i,y)−θ̂(i,y)∥2+2∥v(i)∥2|||Φ⋆(v,y)−Φ̂(v,y)|||op+2∥ã(i)∥2|||(Φ⋆(a,y)−Φ̂(a,y))|||op
(c)

≤ ∥θ⋆(i)−θ̂(i)∥2 + 2
(
∥v(i)∥2 + ∥ã(i)∥2

)
|||Θ⋆ − Θ̂|||op

(d)

≤ ∥θ⋆(i)−θ̂(i)∥2 + 2
(
∥v(i)∥2 + ∥ã(i)∥2

)
|||Θ⋆ − Θ̂|||1

(e)

≤ ∥θ⋆(i)−θ̂(i)∥2 + 2xmax

(√
pv +

√
pa
)
|||Θ⋆ − Θ̂|||1, (109)
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where (a) follows from triangle inequality, (b) follows because induced matrix norms are submultiplicative,
(c) follows because operator norm of any sub-matrix is no more than operator norm of the matrix
and ℓ2 norm of any sub-vector is no more than ℓ2 norm of the vector, (d) follows because Θ⋆ − Θ̂ is
symmetric and because matrix operator norm is bounded by square root of the product of matrix
one norm and matrix infinity norm, and (e) follows because max{∥v(i)∥∞, ∥a(i)∥∞} ≤ xmax for all
i ∈ [n].

Now, combining (108) and (109), we have

∥(θ⋆(i,y)−θ̂(i,y))+2v(i)⊤(Φ⋆(v,y)−Φ̂(v,y))+2ã(i)⊤(Φ⋆(a,y)−Φ̂(a,y))∥2+
∑
t∈[py ]

∥Φ⋆(y,y)t −Φ̂(y,y)
t ∥2

≤ ∥θ⋆(i)−θ̂(i)∥2+2xmax

(√
pv+
√
pa
)
|||Θ⋆−Θ̂|||1+

∑
t∈[py ]

∥Θ⋆
t−Θ̂t∥2

(a)

≤ R(ε, δ/n) + 2xmax

(√
pv +

√
pa
)√
pε+ pyε,

and (a) follows from Theorem. 1 by using the relationship between vector norms. The proof is
complete by rescaling ε and absorbing the constants in c.

Proof of Lemma. D.1: Perturbation in the mean vector Let Z(ψ,Ψ) ∈ R+ denote the
log-partition function of fu(·|ψ,Ψ) in (107). Then, from (Busa-Fekete et al., 2019, Theorem 1), we
have

∥µ
ψ̂,Ψ̂

(u)− µψ⋆,Ψ⋆(u)∥2 = ∥∇ψ̂Z(ψ̂, Ψ̂)−∇ψ⋆Z(ψ⋆,Ψ⋆)∥2. (110)

For t1, t2, t3 ∈ [p], consider ∂2Z(ψ,Ψ)
∂ψt1∂ψt2

and ∂2Z(ψ,Ψ)
∂ψt1∂Ψt2,t3

. Using the fact that the Hessian of the log
partition function of any regular exponential family is the covariance matrix of the associated
sufficient statistic, we have

∂2Z(ψ,Ψ)

∂ψt1∂ψt2
= Covψ,Ψ(ut1 , ut2) and

∂2Z(ψ,Ψ)

∂ψt1∂Ψt2,t3

= Covψ,Ψ(ut1 , ut2ut3). (111)

Now, for some c ∈ (0, 1), ψ̃ ≜ cψ̂ + (1− c)ψ⋆ and Ψ̃ ≜ cψ̃ + (1− c)ψ̃, we have the following from the
mean value theorem

∂Z(ψ̂, Ψ̂)

∂ψ̂t1
− ∂Z(ψ

⋆,Ψ⋆)

∂ψ⋆t1

=
∑
t2∈[p]

∂2Z(ψ̃, Ψ̃)

∂ψ̃t2∂ψ̃t1
· (ψ̂t2 − ψ⋆t2) +

∑
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∑
t3∈[p]

∂2Z(ψ̃, Ψ̃)

∂Ψ̃t2,t3∂ψ̃t1
· (Ψ̂t2,t3 −Ψ⋆

t2,t3)

(111)
=
∑
t2∈[p]

Cov
ψ̃,Ψ̃

(ut1 , ut2)·(ψ̂t2−ψ⋆t2)+
∑
t3∈[p]

∑
t2∈[p]

Cov
ψ̃,Ψ̃

(ut1 , ut3ut2)·(Ψ̂t3,t2−Ψ⋆
t3,t2).

Now, using the triangle inequality and sub-multiplicativity of induced matrix norms, we have

∥∇
ψ̂
Z(ψ̂, Ψ̂)−∇ψ⋆Z(ψ⋆,Ψ⋆)∥2 ≤ |||Cov

ψ̃,Ψ̃
(u,u)|||op∥(ψ̂−ψ⋆)∥2

+
∑
t3∈[p]

|||Cov
ψ̃,Ψ̃

(u, ut3u)|||op∥(Ψ̂t3−Ψ⋆
t3)∥2. (112)

Combining (110) and (112) completes the proof.
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D.1 Bounded operator norms for perturbations in the parameters

In Section. 4.2, we assumed the operator norms of (i) the covariance matrix of y conditioned on a, z,
and v and (ii) the cross-covariance matrix of y and yty conditioned on a, z, and v for all t ∈ [py]
to remain bounded for small perturbation in the parameters. In this section, we provide examples
where these hold.

Suppose the distribution of y conditioned on a, z, and v is a Gaussian distribution. For simplicity,
let the mean of this distribution be zero. Then, for any t, u, v ∈ [py],

Covθ,Θ(yu, ytyv|a, z,v) = Eθ,Θ(yuytyv|a, z,v)
(a)
= 0.

where (a) follows because Eθ,Θ(yuytyv|a, z,v) is the third cumulant of yuytyv|a, z, v and the third
cumulant for any Gaussian distribution is zero (Holmquist, 1988). Then,

max
t∈[py ]

|||Covθ,Θ(y, yty|a, z,v)|||op = 0. (113)

Further, (113) also holds for small perturbations in θ and Θ as the distribution of y conditioned on a,
z, and v would still be a Gaussian distribution.

Now, we bound |||Covθ,Θ(y, y|a, z,v)|||op under additional conditions. For simplicity, suppose
Varθ,Θ(yt|a, z,v) = 1 for all t ∈ [py]. Further, suppose the (undirected) graphical structure associated
with elements of y, i.e., y1, · · · , ypy , is a chain (This would be true for the motivating example in
Figure. 1(a)). If the correlation between any two elements of y connected by an edge in the tree is
equal to ρ ∈ [0, 1] (This is equivalent to all the off-diagonal non-zero entries of Θ being the same),
then for any u, v ∈ [py],

Covθ,Θ(yu, yv|a, z,v)
(a)
= ρ|u−v|,

where (a) follows by the correlation decay property for Gaussian tree models (Tan et al., 2010,
Equation. 18). Then, for any 0 ≤ ρ < 1

|||Covθ,Θ(y, y|a, z,v)|||op
(a)

≤ 1 + ρ

1− ρ
, (114)

where (a) follows from Trench (1999). Further, (114) holds for small perturbations in θ and Θ as
long as ρ < 1. Therefore, C(B) in (22) is a constant (with respect to p) for small perturbations in θ
and Θ.

While we showed that C(B) is a constant for a class of Gaussian distributions, we except similar
results for truncated Gaussian distributions and exponential family distributions in (3).

E Proof of Proposition 2: Impute missing covariates

We start by decomposing the true covariates v into two variables: one to capture the randomness in
the noisy observations v and the other to capture the randomness in the measurement error ∆v, i.e.,
v = v −∆v. Then, by letting p ≜ 2pv + pa + py and using (27), the joint probability distribution fw
of the p-dimensional random vector w ≜ (∆v, v, a, y) can be parameterized by a vector ϕ ∈ Rp×1 and
a symmetric matrix Φ ∈ Rp×p as follows

fw(w;ϕ,Φ) ∝ exp
(
ϕ
⊤
w +w⊤Φw

)
, where w ≜ (∆v,v,a,y),

55



and ∆v, v, a, and y denote realizations of ∆v, v, a, and y, respectively. More importantly, ϕ and Φ
are derived completely from ϕ and Φ, respectively, and have special structure:

ϕ
(v)

= −ϕ(∆v) = ϕ(v),

ϕ
(u)

= ϕ(u) for all u ∈ {a, y},

Φ
(∆v,∆v)

= Φ
(v,v)

= −Φ(v,∆v)
= Φ(v,v)

Φ
(u,v)

= −Φ(u,∆v)
= Φ(u,v) for all u ∈ {a, y}, and

Φ
(u1,u2) = Φ(u1,u2) for all u1,u2 ∈ {a, y}.

Now, to learn counterfactuals and measurement errors for units i ∈ {1, · · · , n/2}, we use the
methodology developed in Section. 3 by replacing the role of unobserved covariates z by ∆v. In
particular, we consider learning fy|a,∆v,v(y = ·|a = ·,∆v,v) as a function of a. From (4) and the
structure on ϕ and Φ described above, this reduces to learning

(i) ϕ(y) + 2Φ
(∆v,y)⊤

∆v + 2Φ
(v,y)⊤

v = ϕ(y) − 2Φ(v,y)⊤∆v + 2Φ(v,y)⊤v,

(ii) Φ
(a,y)

= Φ(a,y), and

(iii) Φ
(y,y)

= Φ(y,y).

To learn these, we consider the distribution of x ≜ (v, a, y) conditioned on ∆v = ∆v. From (6), we
have

fx|∆v

(
x|∆v; θ(∆v),Θ

)
∝exp

(
[θ(∆v)]⊤x+x⊤Θx

)
with θ(∆v)≜

ϕ(v)−2Φ(v,v)⊤∆v

ϕ(a)−2Φ(v,a)⊤∆v

ϕ(y)−2Φ(v,y)⊤∆v

, (115)

x ≜ (v,a,y), Θ ≜ Φ, and v, a, and y denoting realizations of v, a, and y, respectively. The
special structure on Φ discussed above implies that Φ(v,v),Φ(v,a), and Φ(v,y) affect both θ(∆v) and Θ
which we exploit. As mentioned in Section. 6.1, we denote the true distribution of x conditioned on
∆v = ∆v by fx|∆v

(
· |∆v; θ⋆(∆v),Θ⋆

)
.

Proof idea First, we use units i ∈ {n/2 + 1, · · · , n} without any measurement error to estimate
ϕ⋆ and Φ⋆ = Θ⋆, i.e., the parameters corresponding to the distribution of (v, a, y) (see Section. 6.1).
Next, for units i ∈ {1, · · · , n/2} with measurement error, we estimate θ⋆(∆v(i)) by expressing it as a
linear combination of the estimates of ϕ⋆ and Φ⋆ (enabling the use of Example. 1). The coefficients
of this linear combination turn out to be our estimates of the measurement error ∆v(i).

Estimate ϕ⋆ and Φ⋆ For units i ∈ {n/2 + 1, · · · , n}, under our assumption ∆v(i) = 0 implying
θ⋆(∆v(i)) = ϕ⋆. Therefore, in addition to the population-level parameter Θ⋆ = Φ⋆, the unit-level
parameter θ⋆(∆v) = ϕ⋆ is also shared for these units. As a result, the set of distributions

{
fx|∆v

(
·

|∆v; θ⋆(∆v),Θ⋆
)}n

i=1
all coincide. Thus, learning ϕ⋆ and Φ⋆ boils down to learning parameters of a

sparse graphical model (because of the assumptions in Section. 6.1) from n/2 samples. We use the
methodology and analysis from Shah et al. (2023) (which is closely related to the one in this work)
to obtain estimates ϕ̂ and Φ̂ such that with probability at least 1− δ, we have

max
{
∥ϕ⋆ − ϕ̂∥2, |||Φ⋆−Φ̂|||2,∞

}
≤ ε1 whenever n ≥

cec
′β log p√

δ

ε21
. (116)
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Recover the unit-level parameters Now, for units i ∈ {1, · · · , n/2}, we express the true
unit-level parameters θ⋆(∆v(i)) as a linear combination of known vectors. To that end, fix any
i ∈ [n/2]. Then, using (115), we can write θ⋆(i) ≜ θ⋆(∆v(i)) as a linear combination of pv + 1 vectors,
i.e.,

θ⋆(i) = Ba(i), (117)

where

B ≜
[
ϕ⋆,−2Φ⋆1, · · · ,−2Φ⋆pv

]
∈ Rp×(pv+1) and a(i) ≜

[
1

∆v(i)

]
∈ R(pv+1)×1. (118)

While we do not know the matrix B, we can produce an estimate B̂ using ϕ̂ and Φ̂ such that, with
probability at least 1− δ,

|||B̂−B|||2,∞ ≤ ε1 whenever n ≥
cec

′β log p√
δ

ε21
. (119)

This guarantee follows directly from (116) and the definition of B in (118). Then, we can write

θ⋆(i) = B̂ã(i) where ã(i) ≜ a(i) + ζ, (120)

for some error term ζ. Conditioned on the event (119), ζ can be controlled in following manner

∥B̂ζ∥2
(120)
= ∥θ⋆(i) − B̂a(i)∥2

(117)
= ∥Ba(i) − B̂a(i)∥2

(a)

≤ |||B− B̂|||op∥a(i)∥2
(b)

≤
(√
p|||B− B̂|||2,∞

)
·
(√

pv + 1∥a(i)∥∞
) (c)

≤ αε1
√
(pv + 1)p, (121)

where (a) follows from sub-multiplicativity of induced matrix norms, (b) follows from standard matrix
norm inequalities, and (c) follows from (119) and because the measurement errors are bounded by α.

Then, performing an analysis similar to one in Appendix. C while using the bound on n in (116)
instead of the one in (19), and using Example. 1, we obtain estimates θ̂(1), · · · , θ̂(n/2) such that (see
Corollary. 1(a) for reference), with probability at least 1− δ, we have

max
i∈[n/2]

MSE(θ̂(i), θ⋆(i)) ≤ max
{
ε21,

cec
′β
(
pv + log(log np

δ )
)

p

}
, (122)

whenever n ≥ cec′βε−2
1

(
log

√
np√
δ
+ pv

)
.

Recover the measurement error We condition on the event (122) happening and note that
the above estimate θ̂(i) of the unit-level parameter θ⋆(i) is of the form θ̂(i) = B̂â(i) for i ∈ [n/2]. We
declare â(i) as our estimate of the measurement error for unit i ∈ [n/2] and prove the corresponding
guarantee below.

Fix any i ∈ [n/2]. From (120) and triangle inequality, we find that

∥θ⋆(i) − θ̂(i)∥2 = ∥B̂a(i) + B̂ζ−B̂â(i)∥2 ≥ ∥B̂a(i) − B̂â(i)∥2−∥B̂ζ∥2. (123)
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Then, doing standard algebra with (123) yields that

MSE(θ̂(i), θ⋆(i)) +
∥B̂ζ∥22
p

≥ ∥B̂a(i) − B̂â(i)∥22
2p

=
(a(i) − â(i))⊤B̂

⊤
B̂(a(i) − â(i))

2p
. (124)

Combining (121), (122), and (124) with the choice ε1 = κε2/α
√
pv + 1, we have

(a(i)−â(i))⊤B̂
⊤
B̂(a(i)−â(i))

2p
≤max

{ ε22κ
2

α2(pv + 1)
,
cec

′β
(
pv+log(log np

δ )
)

p

}
+ε22κ

2, (125)

uniformly for all i ∈ [n/2], with probability at least 1−δ, whenever n ≥ cec′βκ−2ε−2
2 (pv+1)

(
log

√
np√
δ
+

pv
)
. Next, we claim that the eigenvalues of B̂

⊤
B̂ can be lower bounded by κp/2 whenever ε2 ≤√

p/(pv + 1)/8. Taking this claim as given at the moment, we continue our proof. We have

κ

4
∥a(i) − â(i)∥22 ≤

(a(i) − â(i))⊤B̂
⊤
B̂(a(i) − â(i))

2p
whenever ε2 ≤

1

8

√
p

pv + 1
, (126)

uniformly for all i ∈ [n/2]. Combining (125) and (126) completes the proof.

It remains to show that the eigenvalues of B̂
⊤
B̂ can be lower bounded by κp/2 conditioned on (116).

For any matrix M, let λmax(M) and λmin(M) denote the largest and the smallest eigenvalues of M,
respectively. Then from Weyl’s inequality (Bhatia, 2007, Theorem. 8.2), we have

λmin(B̂
⊤
B̂) ≥ λmin(B⊤B)− λmax(B⊤B− B̂

⊤
B̂)

(a)

≥ κp− λmax(B⊤B− B̂
⊤
B̂),

where (a) follows from the assumption on the eigenvalues of B⊤B. Now, it suffices to upper bound
λmax(B⊤B− B̂

⊤
B̂) by κp/2. We have∣∣λmax(B⊤B− B̂

⊤
B̂)
∣∣ (a)= |||B⊤B− B̂

⊤
B̂|||op

(b)

≤ (pv + 1)|||B⊤B− B̂
⊤
B̂|||max

(c)

≤ (pv + 1)
(
|||B⊤(B− B̂

)
|||max + |||

(
B− B̂

)⊤B̂|||max

)
(d)

≤ (pv + 1)
(
|||B⊤|||2,∞ + |||B̂

⊤
|||2,∞

)
|||
(
B− B̂

)⊤|||2,∞
(e)

≤ (pv + 1)(2α
√
p+ 2α

√
p) · ε1

(f)

≤ 4κε2
√
pv + 1

√
p

(g)

≤ κp

2
,

where (a) follows because B⊤B− B̂
⊤
B̂ is symmetric, (b) follows from because |||M|||op ≤ |||M|||F ≤

d|||M|||max for any square matrix M ∈ Rd×d, (c) follows from the triangle inequality, (d) follows
by Cauchy–Schwarz inequality, (e) follows because |||B̂|||max ≤ 2α, |||B|||max ≤ 2α (because of the
assumptions in Section. 6.1), and from (116) and (118), (f) follows from the choice of ε1, and (g)

follows whenever ε2 ≤ 1
8

√
p

pv+1 .

58



F Logarithmic Sobolev inequality and tail bounds

In this section, we present two results which may be of independent interest. First, we show that a
random vector supported on a compact set satisfies the logarithmic Sobolev inequality (to be defined)
if it satisfies the Dobrushin’s uniqueness condition (to be defined). This result is a generalization of
the result in Marton (2015) for discrete random vectors to continuous random vectors supported on
a compact set. Next, we show that if a random vector satisfies the logarithmic Sobolev inequality,
then any arbitrary function of the random vector concentrates around its mean. This result is a
generalization of the result in Dagan et al. (2021) for discrete random vectors to continuous random
vectors.

Throughout this section, we consider a p-dimensional random vector x supported on X p with
distribution fx where p ≥ 1. We start by defining the logarithmic Sobolev inequality (LSI). We use
the convention 0 log 0 = 0.

Definition F.1 (Logarithmic Sobolev inequality). A random vector x satisfies the logarithmic Sobolev
inequality with constant σ2 > 0 (abbreviated as LSIx(σ

2)) if

Entx
(
q2
)
≤ σ2Ex

[
∥∇xq(x)∥22

]
for all q : X p → R, (127)

where Entx (g)≜Ex[g(x) log g(x)]−Ex[g(x)] logEx[g(x)] denotes the entropy of the function g :X p→R+.

Next, we state the Dobrushin’s uniqueness condition. For any distributions f and g, let ∥f−g∥TV
denote the total variation distance between f and g.

Definition F.2 (Dobrushin’s uniqueness condition). A random vector x satisfies the Dobrushin’s
uniqueness condition with coupling matrix Θ ∈ Rp×p+ if |||Θ|||op < 1, and for every t ∈ [p], u ∈ [p]\{t},
and x−t, x̃−t ∈ X p−1 differing only in the uth coordinate,

∥fxt|x−t=x−t
−fxt|x−t=x̃−t

∥TV ≤ Θtu. (128)

We note that the Dobrushin’s uniqueness condition, as originally stated (see Marton (2015)) for
Ising model, also requires Θtt = 0 for all t ∈ [p]. This condition makes sense for Ising model where
x2t = 1 for all t ∈ [p]. However, this is not true for continuous random vectors necessitating a need
for modification in the condition.

From hereon, we let X p be compact unless otherwise specified. Moreover, we define

fmin ≜ min
t∈[p],x∈X p

fxt|x−t
(xt|x−t). (129)

Now, we provide the first main result of this section with a proof in Appendix. F.1.

Proposition F.1 (Logarithmic Sobolev inequality). If a random vector x with fmin > 0 (see (129))
satisfies (a) the Dobrushin’s uniqueness condition (Definition. F.2) with coupling matrix Θ ∈ Rp×p+ ,
and (b) xt|x−t satisfies LSIxt|x−t=x−t

(σ2) for all t ∈ [p] and x−t ∈ X p−1 (see Definition. F.1), then it
satisfies LSIx(2σ

2/(fmin(1− |||Θ|||op)2)).
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Next, we define the notion of pseudo derivative and pseudo Hessian that come in handy in our proofs
for providing upper bounds on the norm of the derivative and the Hessian.

Definition F.3 (Pseudo derivative and Hessian). For a function q : X p → R, the functions
∇̃q : X p → Rp1 and ∇̃2q : X p → Rp1×p2 (p1, p2 ≥ 1) are, respectively, called a pseudo derivative and
a pseudo Hessian for q if for all y ∈ X p and ρ ∈ Rp1×1, we have

∥∇̃q(y)∥2 ≥ ∥∇q(y)∥2 and ∥ρ⊤∇̃2q(y)∥2 ≥ ∥∇
[
ρ⊤∇̃q(y)

]
∥2. (130)

Finally, we provide the second main result of this section with a proof in Appendix. F.2.

Proposition F.2 (Tail bounds for arbitrary functions under LSI). Given a random vector x
satisfying LSIx(σ

2), any function q : X p → R with a pseudo derivative ∇̃q and pseudo Hessian ∇̃2q
(see Definition. F.3), x satisfies a tail bound, namely for any fixed ε > 0, we have

P
[∣∣qc(x)∣∣≥ε]≤exp

(
−c
σ4

min
( ε2

E
[
∥∇̃q(x)∥2

]2
+max

x∈X p
|||∇̃2q(x)|||2F

,
ε

max
x∈X p

|||∇̃2q(x)|||op

))
,

where qc(x) = q(x)− E
[
q(x)

]
and c is a universal constant.

F.1 Proof of Proposition. F.1: Logarithmic Sobolev inequality

We start by defining the notion of W2 distance (Marton, 2015) which is useful in the proof. We note
that W2 distance is a metric on the space of probability measures and satisfies triangle inequality.

Definition F.4. (Marton, 2015, W2 distance) For random vectors x and y supported on X p with

distributions f and g, respectively, the W2 distance is given by W 2
2 (gy, fx) ≜ infπ

∑
t∈[p]

[
Pπ(xt ̸= yt)

]2
,

where the infimum is taken over all couplings π(x, y) such that π(x) = f(x) and π(y) = g(y).

Given Definition. F.4, our next lemma states that if appropriate W2 distances are bounded, then the
KL divergence (denoted by KL (· ∥·)) and the entropy approximately tensorize. We provide a proof
in Appendix. F.1.1.

Lemma F.1 (Approximate tensorization of KL divergence and entropy). Given random vectors x
and y supported on X p with distributions f and g, respectively, such that fmin > 0 (see (129)), if for
all subsets S ⊆ [p] (with SC ≜ [p] \ S) and all ySC ∈ X p−|S|,

W 2
2

(
gyS |ySC=y

SC
, fxS |xSC=y

SC

)
≤C

∑
t∈S

E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

∣∣∣ySC =ySC

]
, (131)

almost surely for some constant C ≥ 1, then

KL (gy ∥fx) ≤
2C

fmin

∑
t∈[p]

E
[
KL
(
gyt|y−t=y−t

∥∥fxt|x−t=y−t

) ]
, and (132)

Entx (q) ≤
2C

fmin

∑
t∈[p]

Ex−t

[
Entxt|x−t

(q)
]

for any function q : X p → R+. (133)

Next, we claim that if the random vector x satisfies Dobrushin’s uniqueness condition, then the
condition (131) of Lemma. F.1 is naturally satisfied. We provide a proof in Appendix. F.1.2.
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Lemma F.2 (Dobrushin’s uniqueness implies approximate tensorization). Given random vectors x
and y supported on X p with distributions f and g, respectively, if x satisfies Dobrushin’s uniqueness
condition (see Definition. F.2) with coupling matrix Θ ∈ Rp×p, then for all subsets S ⊆ [p] (with
SC ≜ [p] \ S) and all ySC ∈ X p−|S|,

W 2
2

(
gyS |ySC=y

SC
, fxS |xSC=y

SC

)
≤C

∑
t∈S

E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

∣∣∣ySC =ySC

]
, (134)

almost surely where C =
(
1−|||Θ|||op

)2.
Now to prove Proposition. F.1, applying Lemmas. F.1 and F.2 for an arbitrary function f : X p → R,
we find that

Entx
(
q2
)
≤ 2

fmin

(
1− |||Θ|||op

)2 ∑
t∈[p]

Ex−t

[
Entxt|x−t

(
q2
) ]

(a)

≤ 2σ2

fmin

(
1− |||Θ|||op

)2 ∑
t∈[p]

Ex−t

[
Ext|x−t

[
∥∇xtq(xt; x−t)∥

2
2

]]
(b)
=

2σ2

fmin

(
1− |||Θ|||op

)2Ex−t

[
Ext|x−t

[∑
t∈[p]

∥∇xtq(xt; x−t)∥
2
2

]]
(c)
=

2σ2

fmin

(
1− |||Θ|||op

)2Ex

[
∥∇xq(x)∥22

]
,

where (a) follows because xt|x−t satisfies LSIxt|x−t=x−t
(σ2) for all t ∈ [p] and x−t ∈ X p−1, (b) follows

by the linearity of expectation and (b) follows by the law of total expectation. The claim follows.

F.1.1 Proof of Lemma. F.1: Approximate tensorization of KL divergence and entropy

We start by establishing a reverse-Pinsker style inequality for distributions with compact support to
bound their KL divergence by their total variation distance. We provide a proof at the end.

Lemma F.3 (Reverse-Pinsker inequality). For any distributions f and g supported on X ⊂ R such
that minx∈X f(x) > 0, we have KL (g ∥f) ≤ 4

minx∈X f(x)∥g−f∥
2
TV.

Given Lemma. F.3, we proceed to prove Lemma. F.1.

Proof of bound (132) To prove (132), we show that the following inequality holds using the
technique of mathematical induction on p:

KL (gy ∥fx) ≤
4C

fmin

∑
t∈[p]

E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

]
. (135)

Then, (132) follows by using Pinsker’s inequality to bound the right hand side of (135).

Base case: p = 1 For the base case, we need to establish that the claim holds for all distributions
supported on X that satisfy the required conditions. In other words, we need to show that

KL (gy ∥fx) ≤
4C

fmin
∥gy−fx∥2TV for every t ∈ [p],

for all random variables x and y supported on X such that fmin = minx∈X fx(x) > 0. This follows
from Lemma. F.3 by observing that C ≥ 1.
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Inductive step Now, we assume that the claim holds for all distributions supported on X p−1 that
satisfy the required conditions, and establish it for distributions supported on X p. From the chain
rule of KL divergence, we have

KL (gy ∥fx) = KL (gyt ∥fxt) + E
[
KL
(
gy−t|yt

∥∥fx−t|xt
) ]

for every t ∈ [p].

Taking an average over all t ∈ [p], we have

KL (gy ∥fx) =
1

p

∑
t∈[p]

KL (gyt ∥fxt) +
1

p

∑
t∈[p]

E
[
KL
(
gy−t|yt

∥∥fx−t|xt
) ]
. (136)

Now, we bound the first term in (136). Let π∗ be the coupling between x and y that achieves
W2(gy, fx) i.e.,10

π∗ = argmin
π:π(x)=f(x),π(y)=g(y)

∑
t∈[p]

[
Pπ(xt ̸= yt)

]2
. (137)

Then, we have

1

p

∑
t∈[p]

KL (gyt ∥fxt)
(a)

≤ 1

p

∑
t∈[p]

4

fmin
∥gyt−fxt∥2TV

(b)

≤ 4

pfmin

∑
t∈[p]

[
Pπ∗(xt ̸= yt)

]2
(c)
=

4

pfmin
W 2

2 (gy, fx)

(131)
≤ 4C

pfmin

∑
t∈[p]

E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

]
, (138)

where (a) follows from Lemma. F.3 because lower bound on conditional implies lower bound on
marginals, i.e., mint∈[p],xt∈X fxt(xt) = mint∈[p],xt∈X

∫
x−t∈X p−1 fxt|x−t

(xt|x−t)fx−t(x−t)dx−t > fmin,
(b) follows from the connections of total variation distance to optimal transportation cost, i.e.,
∥gy−fx∥TV = infπ:π(x)=f(x),π(y)=g(y) Pπ(x ̸= y), and (c) follows from Definition. F.4 and (137).

Next, we bound the second term in (136). We have

1

p

∑
t∈[p]

E
[
KL
(
gy−t|yt

∥∥fx−t|xt
) ]

(a)

≤ 1

p

∑
t∈[p]

E
[
4C

fmin

∑
u∈[p]\{t}

E
[
∥gyu|y−u=y−u

−fxu|x−u=y−u
∥2TV

∣∣∣yt = yt

]]
(b)
=

4C

pfmin

∑
t∈[p]

∑
u∈[p]\{t}

E
[
∥gyu|y−u=y−u

−fxu|x−u=y−u
∥2TV

]
10The minimum is achieved by using arguments similar to the ones used to show that the Wasserstein distance

attains its minimum (Villani, 2009, Chapter 4).
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=
4C(p− 1)

pfmin

∑
u∈[p]

E
[
∥gyu|y−u=y−u

−fxu|x−u=y−u
∥2TV

]
, (139)

where (a) follows from the inductive hypothesis and (b) follows from the law of total expectation.
Then, (135) follows by putting (136), (138), and (139) together.

Proof of bound (133) To prove (133), we note that (132) holds for any random vector y supported
on X p. Consider y to be such that q(x)/Ex[q(x)] is the Radon-Nikodym derivative of gy with respect
to fx. For any Ap ⊆ X p, we have∫

y∈Ap

gydy =

∫
x∈Ap

q(x)

Ex[q(x)]
fxdx.

Integrating out yt and xt for t ∈ [p], we have∫
y−t∈Ap−1

gy−tdy−t =

∫
x−t∈Ap−1

Ext|x−t

[
q(x)

]
Ex

[
q(x)

] fx−tdx−t,

implying

dgy−t

dfx−t

=
Ext|x−t

[
q(x)

]
Ex

[
q(x)

] and
dgyt|y−t

dfxt|x−t

=
q(x)

Ext|x−t

[
q(x)

] for all t ∈ [p]. (140)

We have

KL (gy ∥fx)
(a)
= Ex

[
dgy
dfx

log
dgy
dfx

]
(b)
= Ex

[
q(x)

Ex

[
q(x)

] log q(x)

Ex

[
q(x)

]]
=

1

Ex

[
q(x)

](Ex

[
q(x) log q(x)

]
− Ex

[
q(x)

]
logEx

[
q(x)

])
=

Entx (q)

Ex

[
q(x)

] , (141)

where (a) follows from the definition of KL divergence and (b) follows from the choice of y. Similarly,
for every t ∈ [p], we have

Ey−t

[
KL
(
gyt|y−t=y−t

∥∥fxt|x−t=y−t

) ]
(a)
= Ey−t

[
Eyt|y−t

[
log

dgyt|y−t

dfxt|x−t

]]
(b)
= Ey

[
log

dgyt|y−t

dfxt|x−t

]
(c)
= Ex

[
dgy
dfx

log
dgyt|y−t

dfxt|x−t

]
(d)
= Ex

[
q(x)

Ex

[
q(x)

] log q(x)

Ext|x−t

[
q(x)

]]
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(e)
=

Ex−t

[
Ext|x−t

[
q(x) log q(x)

]
− Ext|x−t

[
q(x) logExt|x−t

[
q(x)

]]]
Ex

[
q(x)

]
(f)
=

Ex−t

[
Entxt|x−t

(q)
]

E
[
q(x)

] , (142)

where (a) follows from the definition of KL divergence, (b) follows from the law of total expectation,
(c) follows from the definition of Radon-Nikodym derivative, (d) follows from the choice of y and
(140), (e) follows from the law of total expectation, (f) follows from the definition of entropy. Then,
(133) follows by putting (132), (141), and (142) together.

Proof of Lemma. F.3: Reverse-Pinsker inequality Using the facts (a) log a ≥ 1− 1
a for all

a > 0, and (b) minx∈X f(x) > 0, we find that

log
f(x)

g(x)
≥ 1− g(x)

f(x)
for every x ∈ X . (143)

Multiplying both sides of (143) by g(x) ≥ 0 and rearranging terms yields that

g(x) log
g(x)

f(x)
≤ g2(x)

f(x)
− g(x) for every x ∈ X . (144)

Now, we have

KL (g ∥f) =
∫
x∈X

g(x) log
g(x)

f(x)
dx

(144)
≤
∫
x∈X

(
g2(x)

f(x)
− g(x)

)
dx

(a)
=

∫
x∈X

(
g(x)− f(x)

)2
f(x)

dx

≤ 1

minx∈X f(x)

∫
x∈X

(
g(x)− f(x)

)2
dx

(b)

≤ 1

minx∈X f(x)

(∫
x∈X

∣∣g(x)− f(x)∣∣dx)2
(c)
=

1

minx∈X f(x)

(
2∥g−f∥TV

)2
=

4

minx∈X f(x)
∥g−f∥2TV,

where (a) follows by simple manipulations, (b) follows by using the order of norms on Euclidean
space, and (c) follows by the definition of the total variation distance.

F.1.2 Proof of Lemma. F.2: Dobrushin’s uniqueness implies approximate tensorization

We start by defining the notion of Gibbs sampler which is useful in the proof.

Definition F.5. (Marton, 2015, Gibbs Sampler) For a random vector x with distribution f , define
the Markov kernels and the Gibbs sampler as follows

Γt(x|x′) ≜ 1(x−t = x′
−t)fxt|x−t

(xt|x′
−t) and Γ(x|x′) ≜ p−1

∑
t∈[p]

Γt(x|x′), (145)
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for all t ∈ [p] and x, x′ ∈ X p. That is, the kernel Γt leaves all but the tth coordinate unchanged, and
updates the tth coordinate according to fxt|x−t

, and the sampler Γ selects an index t ∈ [p] at random,
and applies Γt. Further, for a random vector y with distribution g supported on X p, we also define

gyΓt(y) ≜
∫
gy(y

′)Γt(y|y′)dy′ for t ∈ [p], and

gyΓ(y) ≜
∫
gy(y

′)Γ(y|y′)dy′ for all y ∈ X p. (146)

We now proceed to prove Lemma. F.2 and split it in two cases: (i) S = [p], and (ii) S ⊂ [p].

Case (i) (S = [p]) Let Γ be the Gibbs sampler associated with the distribution f . Then,

W2

(
gyS |ySC

, fxS |xSC

)
=W2(gy, fx)

(a)

≤ W2(gy, gyΓ) +W2(gyΓ, fx), (147)

where (a) follows from the triangle inequality. We claim that

W2(gy, gyΓ) ≤
1

p

√∑
t∈[p]

Ey−t

[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

]
, and (148)

W2(gyΓ, fx) ≤
(
1− (1− |||Θ|||op)

p

)
W2(gy, fx). (149)

Putting (147) to (149) together, we have

W2(gy, fx) ≤
1

p

√∑
t∈[p]

Ey−t

[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

]
+

(
1− (1− |||Θ|||op)

p

)
W2(gy, fx). (150)

Rearranging (150) results in (134) for S = [p] as desired. It remains to prove our earlier claims (148)
and (149) which we now do one-by-one.

Proof of bound (148) on W2(gy, gyΓ) To bound W2(gy, gyΓ), we construct a random vector yΓ

such that it is coupled with the random vector y. We select an index b ∈ [p] at random, and define

yΓv ≜ yv for all v ∈ [p] \ {b}.

Then, given b and y−b = y−b, we define the joint distribution of (yb, yΓb ) to be the maximal coupling
of gyb|y−b=y−b

and fxb|x−b=y−b
that achieves ∥gyb|y−b=y−b

−fxb|x−b=y−b
∥TV. It is easy to see that the

marginal distribution of y is gy and the marginal distribution of yΓ is gyΓ (see Definition. F.5). Then,
we have

W 2
2 (gy, gyΓ)

(a)

≤
∑
t∈[p]

[
P(b = t)P(yt ̸= yΓt |b = t) + P(b ̸= t)P(yt ̸= yΓt |b ̸= t)

]2
(b)
=
∑
t∈[p]

[
1

p
P(yt ̸= yΓt |b = t)

]2
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(c)
=

1

p2

∑
t∈[p]

[ ∫
y−t∈X p−1

P(yt ̸= yΓt |b = t, y−t = y−t)gy−t|b=t(y−t|b = t)dy−t

]2
(d)
=

1

p2

∑
t∈[p]

[ ∫
y−t∈X p−1

∥gyt|y−t=y−t
−fxt|x−t=y−t

∥TVgy−t(y−t)dy−t

]2

=
1

p2

∑
t∈[p]

[
Ey−t

[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥TV

]]2
, (151)

where (a) follows from Definition. F.4 and the Bayes rule, (b) follows because P(b = t) = 1
p

and P(yt ̸= yΓt |b ̸= t) = 0, (c) follows by the law of total probability, and (d) follows because
gy−t|b=t(y−t|b = t) = gy−t(y−t) and by the construction of the coupling between y and yΓ. Then,
(148) follows by using Jensen’s inequality in (151).

Proof of bound (149) on W2(gyΓ, fx) We first show that fx is an invariant measure for Γ, i.e.,
fx = fxΓ, implying W2(gyΓ, fx) =W2(gyΓ, fxΓ), and then Γ is a contraction with respect to the W2

distance with rate 1− (1−|||Θ|||op)
p , i.e., W2(gyΓ, fxΓ) ≤

(
1− (1−|||Θ|||op)

p

)
W2(gy, fx), implying (149).

Proof of fx being an invariant measure for Γ We have

fxΓ(x)
(146)
=

∫
x′∈X p

fx(x
′)Γ(x|x′)dx′

(145)
=

∫
x′∈X p

fx(x
′)

(
1

p

∑
t∈[p]

Γt(x|x′)

)
dx′

(145)
=

1

p

∑
t∈[p]

∫
x′∈X p

fx(x
′)1(x−t = x′

−t)fxt|x−t
(xt|x′

−t)dx
′

=
1

p

∑
t∈[p]

fxt|x−t
(xt|x−t)

∫
x′t∈X

fx(x−t, x
′
t)dx

′
t

=
1

p

∑
t∈[p]

fxt|x−t
(xt|x−t)fx−t(x−t) = fx(x).

Proof of Γ being a contraction w.r.t the W2 distance Let π∗ be the coupling between x and
y that achieves W2(gy, fx) i.e.,11

π∗ = argmin
π:π(x)=f(x),π(y)=g(y)

√√√√∑
t∈[p]

[
Pπ(xt ̸= yt)

]2
. (152)

We construct random variables x′ and y′ as well as a coupling π′ between them such that the marginal
distribution of x′ is fxΓ and the marginal distribution of y′ is gyΓ. We start by selecting an index

11The minimum is achieved by using arguments similar to the ones used to show that the Wasserstein distance
attains its minimum (Villani, 2009, Chapter 4).
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b ∈ [p] at random, and defining

y′v ≜ yv and x′v ≜ xv for all v ̸= b. (153)

Then, given b, y′−b = y−b, and x′−b = x−b, we define the joint distribution of (y ′b, x
′
b) to be the

maximal coupling of fxb|x−b
(·|y−b) and fxb|x−b

(·|x−b) that achieves ∥fxb|x−b=y−b
−fxb|x−b=x−b

∥TV.

Now, for every t ∈ [p], we bound Pπ′(y ′t ̸= x ′t) in terms of Pπ∗(yt ̸= xt). To that end, we have

Pπ′(y ′t ̸= x ′t)
(a)
= P(b = t)Pπ′(y ′t ̸= x ′t|b = t) + P(b ̸= t)Pπ′(y ′t ̸= x ′t|b ̸= t)

(b)
=

1

p
Pπ′(y ′t ̸= x ′t|b = t) +

(
1− 1

p

)
Pπ∗(yt ̸= xt), (154)

where (a) follows from the Bayes rule and (b) follows because P(b = t) = 1
p and (153). Focusing on

Pπ′(y ′t ̸= x ′t|b = t) and using the law of total probability, we have

Pπ′(y ′t ̸= x ′t|b = t)

=

∫
y−t,x−t∈X p−1

Pπ′(y ′t ̸= x ′t|b= t, y′−t=y−t, x
′
−t=x−t)π

′
y′−t,x

′
−t|b=t

(y−t,x−t|b= t)dy−tdx−t

(a)
=

∫
y−t,x−t∈X p−1

∥fxt|x−t=y−t
−fxt|x−t=x−t

∥TVπ∗y−t,x−t
(y−t,x−t)dy−tdx−t

= Eπ∗
y−t,x−t

[
∥fxt|x−t=y−t

−fxt|x−t=x−t
∥TV

]
(155)

where (a) follows by the construction of the coupling between y′ and x′. Now, using the triangle
inequality in (155), we have

Pπ′(y ′t ̸= x ′t|b = t) ≤ Eπ∗
y−t,x−t

[ ∑
u∈[p]\{t}

1(rv=sv=yv∀v<u)1(rv=sv=xv∀v>u) ×

1(ru=yu, xu=su)∥fxt|x−t=r−t
−fxt|x−t=s−t

∥TV
]

(128)
≤ Eπ∗

y−t,x−t

[ ∑
u∈[p]\{t}

Θtu1(yu ̸= xu)
]
=

∑
u∈[p]\{t}

ΘtuPπ∗(yu ̸= xu). (156)

Putting together (154) and (156), we have

Pπ′(y ′t ̸= x ′t) ≤
1

p

∑
u∈[p]\{t}

ΘtuPπ∗(yu ̸= xu) +
(
1− 1

p

)
Pπ∗(yt ̸= xt). (157)

Next, we use (157) to show contraction of Γ. To that end, we define diag(Θ) ∈ Rp×p to be the matrix
with diagonal same as Θ and all non-diagonal entries equal to zeros. Then, we have

W 2
2 (gyΓ, fxΓ)

(a)

≤
∑
t∈[p]

[
Pπ′(y ′t ̸= x ′t)

]2
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(157)
≤

∑
t∈[p]

[
1

p

∑
u∈[p]\{t}

ΘtuPπ∗(yu ̸= xu) +
(
1− 1

p

)
Pπ∗(yt ̸= xt)

]2
(b)

≤
∣∣∣∣∣∣∣∣∣∣∣∣(1− 1

p

)
I +

1

p

(
Θ− diag(Θ)

)∣∣∣∣∣∣∣∣∣∣∣∣2
op

∑
t∈[p]

[
Pπ∗(yt ̸= xt)

]2
(c)
=

∣∣∣∣∣∣∣∣∣∣∣∣(1− 1

p

)
I +

1

p

(
Θ− diag(Θ)

)∣∣∣∣∣∣∣∣∣∣∣∣2
op

W 2
2 (gy, fx)

(d)

≤
((

1− 1

p

)
+

1

p
|||Θ− diag(Θ)|||op

)2

W 2
2 (gy, fx)

(e)

≤
((

1− 1

p

)
+

1

p
|||Θ|||op

)2

W 2
2 (gy, fx), (158)

where (a) follows from Definition. F.4, (b) follows by some linear algebraic manipulations, (c) follows
from Definition. F.4 and (152), (d) follows from the triangle inequality, and (e) follows because
|||M1|||op ≤ |||M2|||op for any matrices M1 and M2 such that 0 ≤M1 ≤M2 (component-wise). Then,
contraction of Γ follows by taking square root on both sides of (158).

Case (ii) (S ⊂ [p]) We can directly verify that the matrix ΘS ≜ {Θtu}t,u∈S is such that |||ΘS |||op ≤
|||Θ|||op This is true because the operator norm of any sub-matrix is no more than the operator
norm of the matrix. Further, we note that for any ySC ∈ X p−|S|, the random vector xS |xSC = ySC

with distribution fxS |xSC=y
SC

satisfies the Dobrushin’s uniqueness condition (Definition. F.2) with
coupling matrix ΘS . Then, by performing an analysis similar to the one above, we have

W2

(
gyS |ySC

, fxS |xSC

)
≤ 1(

1− |||ΘS |||op
)√∑

t∈S
E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

∣∣∣ySC = ySC

]
(a)

≤ 1(
1− |||Θ|||op

)√∑
t∈S

E
[
∥gyt|y−t=y−t

−fxt|x−t=y−t
∥2TV

∣∣∣ySC = ySC

]
,

where (a) follows because 1
(1−|||ΘS |||op) ≤

1
(1−|||Θ|||op) . This completes the proof.

F.2 Proof of Proposition. F.2: Tail bounds for arbitrary functions under LSI

Fix a function q : X p → R. Fix any pseudo derivative ∇̃q for q and any pseudo Hessian ∇̃2q for q.
To prove Proposition. F.2, we bound the p-th moment of q(x)−E

[
q(x)

]
by certain norms of ∇̃2q and

Ex

[
∇̃q(x)

]
. To that end, first, we claim that in order to control the p-th moment of q(x)− E

[
q(x)

]
,

it is sufficient to control the p-th moment of ∥∇q(x)∥2. Then, using (130), we note that the p-th
moment of ∥∇q(x)∥2 is bounded by the p-th moment of ∥∇̃q(x)∥2. Next, we claim that the p-th
moment of ∥∇̃q(x)∥2 is bounded by a linear combination of appropriate norms of ∇̃2q and Ex

[
∇̃q(x)

]
.

We formalize the claims below and divide the proof across Appendix. F.2.1 and Appendix. F.2.2.

Lemma F.4 (Bounded p-th moments of q(x)−E
[
q(x)

]
and ∥∇̃q(x)∥2). If a random vector x satisfies

LSIx(σ
2), then for any arbitrary function q : X p → R,∥∥q(x)− E

[
q(x)

]∥∥
Lp
≤ σ

√
2p ∥∥∇q(x)∥2∥Lp

for any p ≥ 2. (159)
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Further, for any pseudo derivative ∇̃q(x) and any pseudo Hessian ∇̃2q(x) for q, and even p ≥ 2,

∥∥∇̃q(x)∥2∥Lp≤2cσ
(
max
x∈X p

|||∇̃2q(x)|||F+
√
p max
x∈X p

|||∇̃2q(x)|||op
)
+4∥Ex

[
∇̃q(x)

]
∥2, (160)

where c ≥ 0 is a universal constant.

Given these lemmas, we proceed to prove Proposition. F.2. We let qc(x) = q(x)−E
[
q(x)

]
. Combining

(159) and (160) for any even p ≥ 2, there exists a universal constant c′ such that

∥qc(x)∥Lp
≤c′σ2

(√
p max
x∈X p

|||∇̃2q(x)|||F+p max
x∈X p

|||∇̃2q(x)|||op+
√
p∥Ex

[
∇̃q(x)

]
∥2
)
. (161)

Now, we complete the proof by using (161) along with Markov’s inequality for a specific choice of p.
For any even p ≥ 2, we have

P
[∣∣qc(x)∣∣ > ec′σ2

(√
p max
x∈X p

|||∇̃2q(x)|||F + p max
x∈X p

|||∇̃2q(x)|||op +
√
p∥Ex

[
∇̃q(x)

]
∥2
)]

= P
[∣∣qc(x)∣∣p>(ec′σ2)p(√p max

x∈X p
|||∇̃2q(x)|||F+p max

x∈X p
|||∇̃2q(x)|||op+

√
p∥Ex

[
∇̃q(x)

]
∥2
)p]

(a)

≤
E
[∣∣qc(x)∣∣p](

ec′σ2
)p(√

pmaxx∈X p |||∇̃2q(x)|||F + pmaxx∈X p |||∇̃2q(x)|||op +
√
p∥Ex

[
∇̃q(x)

]
∥2
)p

(161)
≤ e−p,

where (a) follows from Markov’s inequality. The proof is complete by choosing an appropriate
universal constant c′′, and and performing basic algebraic manipulations after letting

p =
1

c′′σ2
min

( ε2

E
[
∥∇̃q(x)∥2

]2
+ max

x∈X p
|||∇̃2q(x)|||2F

,
ε

max
x∈X p

|||∇̃2q(x)|||op

)
.

We note that an even p ≥ 2 can be ensured by choosing appropriate c′′.

F.2.1 Proof of Lemma. F.4(159): Bounded p-th moment of q(x)− E
[
q(x)

]
Fix any p ≥ 2. We start by using the following result from (Aida and Stroock, 1994, Theorem 3.4)
since x satisfies LSIx(σ

2):∥∥q(x)− E
[
q(x)

]∥∥2
Lp
≤
∥∥q(x)− E

[
q(x)

]∥∥2
L2

+ 2σ2(p− 2) ∥∥∇q(x)∥2∥
2
Lp
. (162)

Then, we bound the first term in (162) by using the fact that logarithmic Sobolev inequality implies
Poincare inequality with the same constant:∥∥q(x)− E

[
q(x)

]∥∥2
L2

= Var(q(x)) ≤ σ2Ex

[
∥∇q(x)∥22

]
. (163)

Putting together (162) and (163), we have∥∥q(x)− E
[
q(x)

]∥∥2
Lp
≤ σ2Ex

[
∥∇q(x)∥22

]
+ 2σ2(p− 2) ∥∥∇q(x)∥2∥

2
Lp

(a)

≤ σ2
(
Ex

[
∥∇q(x)∥p2

])2/p
+ 2σ2(p− 2) ∥∥∇q(x)∥2∥

2
Lp
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(b)
= σ2 ∥∥∇q(x)∥2∥

2
Lp

+ 2σ2(p− 2) ∥∥∇q(x)∥2∥
2
Lp

≤ 2σ2p ∥∥∇q(x)∥2∥
2
Lp
, (164)

where (a) follows by Jensen’s inequality and (b) follows by the definition of p-th moment. Taking
square root on both sides of (164) completes the proof.

F.2.2 Proof of Lemma. F.4(160): Bounded p-th moment of ∥∇̃q(x)∥2

Fix any even p ≥ 2. Fix any pseudo derivative ∇̃q and any pseudo Hessian ∇̃2q. We start by
obtaining a convenient bound on ∥∇̃q(x)∥2 for every x ∈ X p and then proceed to bound the p-th
moment of ∥∇̃q(x)∥2.

Consider a p-dimensional standard normal random vector g independent of x. For a given x = x ∈ X p,
the random variable ∇̃q(x)⊤g

∥∇̃q(x)∥2
is a standard normal random variable. Then, for every x ∈ X p, we have∥∥∥∥∥ ∇̃q(x)⊤g∥∇̃q(x)∥2

∥∥∥∥∥
Lp

(a)
=

(
Eg|x=x

[(
∇̃q(x)⊤g
∥∇̃q(x)∥2

)p])1/p (b)

≥
√
p

2
, (165)

where (a) follows from the definition of p-th moment, and (b) follows since ∥g∥Lp
≥

√
p
2 for any

standard normal random variable g and even p ≥ 2. Rearranging (165), we have

∥∇̃q(x)∥2 ≤
2
√
p

(
Eg|x=x

[(
∇̃q(x)⊤g

)p])1/p
. (166)

Now, we proceed to bound the p-th moment of ∥∇̃q(x)∥2 as follows

∥∥∇̃q(x)∥2∥Lp

(a)
=
(
Ex

[
∥∇̃q(x)∥p2

])1/p
(166)
≤ 2
√
p

(
Ex,g

[(
∇̃q(x)⊤g

)p])1/p
(b)
=

2
√
p

∥∥∥∇̃q(x)⊤g∥∥∥
Lp

(c)

≤ 2
√
p

(∥∥∥∇̃q(x)⊤g−Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

+
∥∥∥Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

)
, (167)

where (a) and (b) follow from the definition of p-th moment and (c) follows by Minkowski’s inequality.
We claim that∥∥∥∇̃q(x)⊤g−Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

≤cσ
(√
p max
x∈X p

|||∇̃2q(x)|||F+p max
x∈X p

|||∇̃2q(x)|||op
)
, & (168)∥∥∥Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

≤2
√
p
∥∥∥Ex

[
∇̃q(x)

]∥∥∥
2
, (169)

where c ≥ 0 is a universal constant. Putting together (167) to (169) completes the proof. It remains
to prove our claims (168) and (169) which we now do one-by-one.
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Proof of bound (168) To start, we bound
(
Ex|g=g

[(
∇̃q(x)⊤g−Ex|g=g

[
∇̃q(x)⊤g

])p])1/p for every
g = g, and then proceed to bound ∥∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

]
∥Lp .

To that end, we define hg(x) ≜ ∇̃q(x)⊤g − Ex|g=g

[
∇̃q(x)⊤g

]
and observe that Ex|g=g

[
hg(x)

]
= 0.

Now, applying Lemma. F.4 (159) to hg(·), we have

∥hg(x)∥Lp
≤ σ

√
2p
(
Ex|g=g

[
∥∇hg(x)∥p2

])1/p (a)

≤ σ
√

2p
(
Ex|g=g

[ ∥∥∥∇[g⊤∇̃q(x)
]∥∥∥p

2

])1/p
(130)
≤ σ

√
2p
(
Ex|g=g

[ ∥∥∥g⊤∇̃2q(x)
∥∥∥p
2

])1/p
, (170)

where (a) follows from the definition of hg(x). Now, to obtain a bound on the RHS of (170), we
further fix x = x. Then, we let g′ be another p-dimensional standard normal vector and apply an
inequality similar to (166) to g⊤∇̃2q(x) obtaining∥∥∥g⊤∇̃2q(x)

∥∥∥
2
≤ 2
√
p

(
Eg′|x=x,g=g

[(
g⊤∇̃2q(x)g′

)p])1/p
,

which implies (
Ex|g=g

[ ∥∥∥g⊤∇̃2q(x)
∥∥∥p
2

])1/p
≤ 2
√
p

(
Ex,g′|g=g

[(
∇g⊤∇̃2q(x)g′

)p])1/p
. (171)

Putting together (170) and (171), and using the definition of hg(x), we have

Ex|g=g

[(
∇̃q(x)⊤g−Ex|g=g

[
∇̃q(x)⊤g

])p]
≤ (2
√
2σ)pEx,g′|g=g

[(
g⊤∇̃2q(x)g′

)p]
. (172)

Now, we proceed to bound ∥∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

]
∥Lp as follows∥∥∥∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

]∥∥∥
Lp

(a)
=
(
Ex,g

[(
∇̃q(x)⊤g − Ex

[
∇̃q(x)⊤g

])p])1/p
(172)
≤ 2

√
2σ
(
Eg,x,g′

[(
g⊤∇̃2q(x)g′

)p])1/p
, (173)

where (a) follows from the definition of p-th moment. Finally, to bound the RHS of (173), we fix
x = x and bound the p-th norm of the quadratic form g⊤∇̃2q(x)g′ by the Hanson-Wright inequality
resulting in(

Eg,g′|x=x

[(
g⊤∇̃2q(x)g′

)p])1/p
≤ c
(√

p|||∇̃2q(x)|||F + p|||∇̃2q(x)|||op
)

≤ c
(√

p max
x∈X p

|||∇̃2q(x)|||F + p max
x∈X p

|||∇̃2q(x)|||op
)
, (174)

where c ≥ 0 is a universal constant. Then, (168) follows by putting together (173) and (174).

Proof of bound (169) By linearity of expectation, we have

∥Ex

[
∇̃q(x)⊤g

]
∥Lp = ∥

(
Ex

[
∇̃q(x)

])⊤
g∥Lp . (175)
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We note that the random variable
(Ex[∇̃q(x)])⊤g
∥Ex[∇̃q(x)]∥2

is a standard normal random variable. Therefore,

∥∥∥∥∥
(
Ex

[
∇̃q(x)

])⊤
g

∥Ex

[
∇̃q(x)

]
∥2

∥∥∥∥∥
Lp

(a)
=

(
Eg

[((Ex

[
∇̃q(x)

])⊤
g

∥Ex

[
∇̃q(x)

]
∥2

)p])1/p (b)

≤ 2
√
p, (176)

where (a) follows from the definition of p-th moment, and (b) follows since ∥g∥Lp
≤ 2
√
p for any

standard normal variable g . Then, (169) follows by using (176) in (175).

G Identifying weakly dependent random variables

In Appendix. F, we derived (in Proposition. F.1) that a random vector (supported on a compact
set) satisfies the logarithmic Sobolev inequality if it satisfies the Dobrushin’s uniqueness condition
(in Definition. F.2). Further, we also derived (Proposition. F.2) tail bounds for a random vector
satisfying the logarithmic Sobolev inequality. Combining the two, we see that in order to use the tail
bound, the random vector needs to satisfy the Dobrushin’s uniqueness condition, i.e, the elements of
the random vector should be weakly dependent. In this section, we show that any random vector
(outside Dobrushin’s regime) that is a τ -Sparse Graphical Model (to be defined) can be reduced
to satisfy the Dobrushin’s uniqueness condition. In particular, we show that by conditioning on
a subset of the random vector, the unconditioned subset of the random vector (in the conditional
distribution) are only weakly dependent. We exploit this trick in Lemma. C.5 and Lemma. C.7 to
enable application of the tail bound in Appendix. F. The result below is a generalization of the result
in Dagan et al. (2021) for discrete random vectors to continuous random vectors.

We start by defining the notion of τ -Sparse Graphical Model.

Definition G.1 (τ -Sparse Graphical Model). A pair of random vectors {x, z} supported on X p×Zpz
is a τ -Sparse Graphical Model for model-parameters τ ≜ (α, ζ, xmax,Θ) and denoted by τ-Sgm if
X = {−xmax, xmax}, and

1. for any realization z ∈ Zpz , the conditional probability distribution of x given z = z is given
by fx|z

(
· |z; θ(z),Θ

)
in (6) for a vector θ(z) ∈ Rp depending on z and a symmetric matrix

Θ ∈ Rp×p (independent of z),

2. max {maxz∈Zpz ∥θ(z)∥∞ , |||Θ|||max} ≤ α, and

3. |||Θ|||∞ ≤ ζ.

Now, we provide the main result of this section.

Proposition G.1 (Identifying weakly dependent random variables). Given a pair of random vectors
{x, z} supported on X p × Zpz that is a τ-Sgm (Definition. G.1) with τ ≜ (α, ζ, xmax,Θ), and a
scalar λ ∈ (0, ζ], there exists L ≜ 32ζ2 log 4p/λ2 subsets S1, · · · , SL ⊆ [p] that satisfy the following
properties:

(a) For any t ∈ [p], we have
∑L

u=1 1(t ∈ Su) = ⌈λL/(8ζ)⌉.

(b) For any u ∈ [L],
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(i) the pair of random vectors {xSu , (x−Su , z)} correspond to a τ1-Sgm with τ1 ≜ (α +
2xmaxζ, λ, xmax,ΘSu) where ΘSu ≜ {Θtv}t,v∈Su

, and

(ii) the random vector xSu conditioned on (x−Su , z) satisfies the Dobrushin’s uniqueness
condition (Definition. F.2) with coupling matrix 2

√
2x2max|ΘSu | whenever λ ∈

(
0, 1

2
√
2x2max

]
with ||||ΘSu ||||op ≤ λ.

Proof of Proposition. G.1: Identifying weakly dependent random variables. We prove each part
one-by-one using a generalization of Dagan et al. (2021, Lemma. 12).

Recall Dagan et al. (2021, Lemma. 12): Let A ∈ Rp×p be a matrix with zeros on the diagonal
and |||A|||∞ ≤ 1. Let 0 < η < 1. Then, there exists subsets S1, · · · , SL ⊆ [p] with L ≜ 32 log 4p/η2

such that

(a) For any t ∈ [p], we have
∑L

u=1 1(t ∈ Su) =
⌈
ηL/8

⌉
, and

(b) For any u ∈ [L] and t ∈ Su,
∑

v∈Su
|Atv| ≤ η.

We claim that Dagan et al. (2021, Lemma. 12) holds even when A does not have zeros on the
diagonal. The proof is exactly the same as the proof of Dagan et al. (2021, Lemma. 12).

Proof of part (a) From Definition. G.1, for any realization z ∈ Zpz , the conditional probability
distribution of x given z = z is given by fx|z

(
· |z; θ(z),Θ

)
in (6) where θ(z) ∈ Rp is a vector and

Θ ∈ Rp×p is a symmetric matrix with |||Θ|||∞ ≤ ζ. Consider the matrix A ≜ 1
ζΘ. Since |||A|||∞ ≤ 1, we

can apply the generalization of Dagan et al. (2021, Lemma. 12) on A with η = λ
ζ . Then part (a)

follows directly from Dagan et al. (2021, Lemma. 12.1).

Proof of part (b)(i) To prove this part, consider the distribution of xSu conditioned on x−Su =
x−Su and z = z for any u ∈ [L], i.e., fxSu |x−Su ,z

(xSu |x−Su , z; θ(z),Θ) ≜ f(xSu |x−Su , z; θ(z),Θ) as
follows

f(xSu |x−Su , z; θ(z),Θ) ∝ exp

(∑
t∈Su

(
θt(z)+2

∑
v/∈Su

Θtvxv

)
xt+

∑
t∈Su

∑
v∈Su

Θtvxtxv

)
. (177)

We can re-parameterize f(xSu |x−Su , z; θ(z),Θ) in (177) as follows

fxSu |x−Su ,z
(xSu |x−Su , z; υ(z,x−Su),Υ) ∝ exp

(
[υ(z,x−Su)]

⊤xSu + x⊤
Su
ΥxSu

)
where

υ(z,x−Su) ∈ R|Su|×1, with υt(z,x−Su) ≜ θt(z) + 2
∑
k/∈Su

Θtvxk for t ∈ Su, and (178)

Υ = Υ⊤ ∈ R|Su|×|Su| with Υtv ≜ Θtv, for all t, v ∈ Su. (179)

Now, to show that the random vector xSu conditioned on x−Su and z corresponds to an τ1-Sgm with
τ1 ≜ (α+ 2xmaxζ, λ, xmax,ΘSu), it suffices to establish that

max

{
max
z∈Zpz

∥υ(z,x−Su)∥∞ , |||Υ|||max

}
(i)

≤ α+ 2xmaxζ and |||Υ|||∞
(ii)

≤ λ. (180)
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To establish (i) in (180), we note that

|||Υ|||max

(179)
≤ |||Θ|||max

(a)

≤ α and (181)

∥υ(z,x−Su)∥∞
(b)

≤ ∥θ(z)∥∞ + 2max
t∈Su

∥Θt∥1 ∥x∥∞
(c)

≤ ∥θ(z)∥∞ + 2xmax|||Θ|||∞

(d)

≤ α+ 2xmaxζ, (182)

where (a) and (d) follow from Definition. G.1, (b) follows from (178) and the triangle inequality, and
(c) follows from the definition of ||| · |||∞ and Definition. G.1. Then, from (181) and (182), we have

max

{
max
z∈Zpz

∥υ(z,x−Su)∥∞ , |||Υ|||max

}
≤ α+ 2xmaxζ,

as claimed. Next, to establish (ii) in (180), we again apply the generalization of Dagan et al. (2021,
Lemma. 12) on the matrix A = 1

ζΘ with η = λ
ζ . Then, we have∑

v∈Su

∣∣∣∣Θtv

ζ

∣∣∣∣ ≤ λ

ζ
for all t ∈ Su, u ∈ [L]. (183)

Therefore, we have

|||Υ|||∞ = max
t∈Su

( ∑
v∈Su

∣∣Υtv

∣∣) (179)
= max

t∈Su

( ∑
v∈Su

∣∣Θtv

∣∣) (183)
≤ λ, (184)

as desired. The proof for this part is now complete.

Proof of part (b)(ii) We start by noting that the operator norm of a symmetric matrix is bounded
by the infinity norm of the matrix. Then, from the analysis in part (b) (i), for any u ∈ Su, we have

||||ΘSu ||||op ≤ ||||ΘSu ||||∞
(179)
= ||||Υ||||∞

(184)
≤ λ.

Therefore, |||2
√
2x2max|ΘSu ||||∞ ≤ 1 whenever λ ≤ 1/2

√
2x2max. It remains to show that for every

u ∈ [L], t ∈ Su, v ∈ Su\{t}, z = z, and x−t, x̃−t ∈ X p−1 differing only in the vth coordinate,

∥fxt|x−t=x−t,z=z−fxt|x−t=x̃−t,z=z∥TV ≤ 2
√
2x2max|Θtv|.

To that end, fix any u ∈ [L], any t ∈ Su, any v ∈ Su\{t}, any z = z, and any x−t, x̃−t ∈ X p−1

differing only in the vth coordinate. We have

∥fxt|x−t=x−t,z=z−fxt|x−t=x̃−t,z=z∥2TV
(a)

≤ 1

2
KL
(
fxt|x−t=x−t,z=z

∥∥fxt|x−t=x̃−t,z=z

)
(b)
=

1

2
(2Θtvxv − 2Θtvx̃v)

2x2max

(c)

≤ 8x4maxΘ
2
tv,

where (a) follows from Pinsker’s inequality, (b) follows by (i) applying (Busa-Fekete et al., 2019,
Theorem 1) to the exponential family parameterized as per fxt|x−t,z in (12), (ii) noting that
fxt|x−t=x−t,z=z ∝ exp

(
[θt(z)+2Θ⊤

t,−tx−t]xt+Θttxt
)

and fxt|x−t=x̃−t,z=z ∝ exp
(
[θt(z)+2Θ⊤

t,−tx̃−t]xt+

Θttxt
)

where xt ≜ x2t − x2max/3, and (iii) noting that the Hessian of the log partition function for
any regular exponential family is the covariance matrix of the associated sufficient statistic which is
bounded by x2max when X = {−xmax, xmax}, and (c) follows because xv, x̃v ∈ {−xmax, xmax}. This
completes the proof.
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H Supporting concentration results

In this section, we provide a corollary of Proposition. F.2 that is used to prove the concentration
results in Lemma. C.5 and Lemma. C.7. To show any concentration result for the random vector
x conditioned on z via Proposition. F.2, we need x|z to satisfy the logarithmic Sobolev inequality
(defined in (127)). From Proposition. F.1, for this to be true, we need the random vector xt conditioned
on (x−t, z) to satisfy the logarithmic Sobolev inequality for all t ∈ [p]. In the result below, we show
this holds with a proof in Appendix. H.1. We define a τ ≜ (α, ζ, xmax,Θ)-dependent constant:

C3,τ ≜ exp (xmax(α+ 2ζxmax)). (185)

Lemma H.1 (Logarithmic Sobolev inequality for xt|x−t, z). Given a pair of random vectors {x, z}
supported on X p ×Zpz that is a τ-Sgm (Definition. G.1) with τ ≜ (α, ζ, xmax,Θ), xt|x−t, z satisfies
LSIxt|x−t=x−t,z=z

(
8x2max
π2 C2

3,τ

)
for all t ∈ [p], x−t ∈ X p−1, and z ∈ Zpz .

Now, we state the desired corollary of Proposition. F.2 with a proof in Appendix. H.2. The corollary
makes use of some τ ≜ (α, ζ, xmax,Θ)-dependent constants:

C4,τ ≜ 1 + αxmax + 4x2maxζ and C5,τ ≜
32x3maxC

4
3,τ

π2
. (186)

Corollary H.1 (Supporting concentration bounds). Suppose a pair of random vectors {x, z} supported
on X p ×Zpz corresponds to a τ-Sgm (Definition. G.1) with τ ≜ (α, ζ, xmax,Θ), and x conditioned
on z satisfies the Dobrushin’s uniqueness condition (Definition. F.2) with coupling matrix Θ. For any
θ, θ ∈ Λθ and Θ ∈ ΛΘ, define the functions q1 and q2 as

q1(x) ≜
∑
t∈[p]

(ωtxt)
2 and q2(x) ≜

∑
t∈[p]

ωtxt exp
(
− [θt + 2Θ⊤

t,−tx−t]xt −Θttxt
)
,

where ω = θ − θ and xt ≜ x2t − x2max/3. Then, for any ε > 0

P
[∣∣qi(x)− E

[
qi(x)

∣∣z]∣∣ ≥ ε∣∣∣z] ≤ exp

(−c(1− |||Θ|||op)4ε2
ci∥ω∥22

)
for i = 1, 2, (187)

where c is a universal constant, c1 ≜ 16α2x2maxC
2
5,τ , and c2 ≜ C2

3,τC
2
4,τC

2
5,τ with C3,τ defined in (185)

and C4,τ and C5,τ defined in (186).

H.1 Proof of Lemma. H.1: Logarithmic Sobolev inequality for xt|x−t, z

Let u be the uniform distribution on X . Then, u satisfies LSIu

(
8x2max
π2

)
(see Ghang et al. (2014,

Corollary. 2.4)). Then, using the Holley-Stroock perturbation principle (see Holley and Stroock
(1987, Page. 31), Ledoux (2001, Lemma. 1.2)), for every t ∈ [p], x−t ∈ X p−1, and z ∈ Zpz ,
xt|x−t = x−t, z = z satisfies the logarithmic Sobolev inequality with a constant bounded by

8x2max exp(supxt∈X ψ(xt;x−t, z)− infxt∈X ψ(xt;x−t, z))

π2
,
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where ψ(xt;x−t, z) ≜ −[θt(z) + 2Θ⊤
t,−tx−t]xt −Θttxt where xt = x2t − x2max/3. We have

exp( sup
xt∈X

ψ(xt;x−t, z)− inf
xt∈X

ψ(xt;x−t, z))
(a)

≤ exp
(
2
∣∣θt(z)+2Θ⊤

t,−tx−t
∣∣xmax+Θttx

2
max

)
(b)

≤ exp
(
(2α+ 4ζxmax)xmax

) (185)
= C2

3,τ ,

where (a) follows from Definition. G.1 and (b) follows by using Definition. G.1 along with triangle
inequality and Cauchy–Schwarz inequality.

H.2 Proof of Corollary. H.1: Supporting concentration bounds

To apply Proposition. F.2 to the random vector x conditioned on z, we need x|z to satisfy the
logarithmic Sobolev inequality. From Proposition. F.1, this is true if (i) fmin = mint∈[p],x∈X p,z∈X pz

fxt|x−t,z(xt|x−t, z) > 0 (see (129)), (ii) x|z satisfies the Dobrushin’s uniqueness condition, and (iii)
xt|x−t, z satisfies the logarithmic Sobolev inequality for all t ∈ [p]. By assumption, x|z satisfies the
Dobrushin’s uniqueness condition with coupling matrix Θ. From Lemma. H.1, xt|x−t, z satisfies

LSIxt|x−t=x−t,z=z

(
8x2maxC

2
3,τ

π2

)
. It remains to show that fmin > 0. Consider any t ∈ [p], any x ∈ X p,

and any z ∈ X pz . Let xt = x2t − x2max/3. We have

fxt|x−t,z(xt|x−t, z)
(a)
=

exp
(
[θt(z) + 2Θ⊤

t,−tx−t]xt +Θttxt

)
∫
X exp

(
[θt(z) + 2Θ⊤

t,−tx−t]xt +Θttxt

)
dxt

(b)

≥
exp

(
− |θt(z) + 2Θ⊤

t,−tx−t|xmax −Θttx
2
max

)
∫
X exp

(
|θt(z) + 2Θ⊤

t,−tx−t|xmax +Θttx2max

)
dxt

(c)

≥
exp

(
−
(
|θ(z)|+ 2∥Θt,−t∥1∥x∥∞

)
xmax −Θttx

2
max

)
∫
X exp

((
|θ(z)|+ 2∥Θt,−t∥1∥x∥∞

)
xmax +Θttx2max

)
dxt

(d)

≥
exp

(
− (α+ 2ζxmax)xmax

)
∫
X exp

(
(α+ 2ζxmax)xmax

)
dxt

(e)
=

1

2xmaxC2
3,τ

,

where (a) follows from (12), (b) and (d) follow from Definition. G.1, (c) follows by triangle inequality
and Cauchy–Schwarz inequality, and (e) follows because

∫
X dxt = 2xmax. Therefore, fmin =

1
2xmaxC2

3,τ
. Putting (i), (ii), and (iii) together, and using Proposition. F.1, we see that x|z satisfies

LSIx

(
C5,τ

(1−|||Θ|||op)2

)
where C5,τ was defined in (186).

Now, we apply Proposition. F.2 to q1 and q2 one-by-one. The general strategy is to choose
appropriate pseudo derivatives and pseudo Hessians for both q1 and q2, and evaluate the corresponding
terms appearing in Proposition. F.2.

Concentration for q1 Fix any x ∈ X p. We start by decomposing q1(x) as follows

q1(x) = ω⊤r(x), (188)
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where ω ≜ (ω2
1, · · · , ω2

p) and r(x) ≜ (r1(x), · · · , rp(x)) with rt(x) = x2t for every t ∈ [p]. Next, we
define H : X p → Rp×p such that

Htu(x) =
dru(x)

dxt
for every t, u ∈ [p]. (189)

Pseudo derivative We bound the ℓ2 norm of the gradient of q1(x) as follows

∥∇q1(x)∥22 =
∑
t∈[p]

(dq1(x)
dxt

)2 (188)
=

∑
t∈[p]

(ω⊤dr(x)

dxt

)2
(189)
= ∥H(x)ω∥22

(a)

≤ |||H(x)|||2op ∥ω∥
2
2

(b)

≤ |||H(x)|||1|||H(x)|||∞ ∥ω∥22 , (190)

where (a) follows because induced matrix norms are submultiplicative and (b) follows because the
matrix operator norm is bounded by square root of the product of matrix one norm and matrix
infinity norm. Now, we claim that the one norm and the infinity norm of H(x) are bounded as
follows

max

{
max
x∈X p

|||H(x)|||1, max
x∈X p

|||H(x)|||∞
}
≤ 2xmax. (191)

Taking this claim as given at the moment, we continue with our proof. Combining (190) and (191),
we have

max
x∈X p

∥∇q1(x)∥22 ≤ 4x2max ∥ω∥
2
2 = 4x2max

∑
t∈[p]

ω4
t ≤ 4x2maxmax

u∈[p]
ω2
u

∑
t∈[p]

ω2
t

(a)

≤ 16x2maxα
2 ∥ω∥22 ,

where (a) follows because ω ∈ 2Λθ. Therefore, we choose the pseudo derivative (see Definition. F.3)
as follows

∇̃q1(x) = 4xmaxα ∥ω∥2 . (192)

Pseudo Hessian Fix any ρ ∈ R. We bound ∥∇(ρ⊤∇̃q1(x))∥22 (see Definition. F.3) as follows

∥∇(ρ⊤∇̃q1(x))∥22 =
∑
u∈[p]

(dρ⊤∇̃q1(x)
dxu

)2 (192)
= 0.

Therefore, we choose the pseudo Hessian (see Definition. F.3) as follows

∇̃2q1(x) = 0. (193)

The concentration result in (187) for q1 follows by applying Proposition. F.2 with the pseudo discrete
derivative defined in (192) and the pseudo discrete Hessian defined in (193).

It remains to show that the one-norm and the infinity-norm of H(x) are bounded as in (191).
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Bounds on the one-norm and the infinity-norm of H(x) We have

Htu(x) =

{
2xt if t = u,

0 otherwise.
(194)

Therefore,

|||H(x)|||1 = max
u∈[p]

∑
t∈[p]

|Htu(x)|
(194)
≤ max

u∈[p]
2|xu|

(a)

≤ 2xmax and

|||H(x)|||∞ = max
t∈[p]

∑
u∈[p]

|Htu(x)|
(194)
≤ max

t∈[p]
2|xt|

(a)

≤ 2xmax,

where (a) follows from Definition. G.1.

Concentration for q2 Fix any x ∈ X p. We start by decomposing q2(x) as follows

q2(x) = ω⊤r(x), (195)

where r(x) ≜ (r1(x), · · · , rp(x)) with rt(x) = xt exp
(
− [θt + 2Θ⊤

t,−tx−t]xt −Θttxt
)

for every t ∈ [p].
Next, we define H : X p → Rp×p such that

Htu(x) =
dru(x)

dxt
for every t, u ∈ [p]. (196)

Pseudo derivative We bound the ℓ2 norm of the gradient of q2(x) as follows

∥∇q2(x)∥22 =
∑
t∈[p]

(dq2(x)
dxt

)2 (195)
=

∑
t∈[p]

(ω⊤dr(x)

dxt

)2
(196)
= ∥H(x)ω∥22

(a)

≤ |||H(x)|||2op ∥ω∥
2
2

(b)

≤ |||H(x)|||1|||H(x)|||∞ ∥ω∥22 , (197)

where (a) follows because induced matrix norms are submultiplicative and (b) follows because the
matrix operator norm is bounded by square root of the product of matrix one norm and matrix
infinity norm. Now, we claim that the one norm and the infinity norm of H(x) are bounded as
follows

max

{
max
x∈X p

|||H(x)|||1, max
x∈X p

|||H(x)|||∞
}
≤ C3,τC4,τ . (198)

where C3,τ and C4,τ were defined in (185) and (186) respectively. Taking this claim as given at the
moment, we continue with our proof. Combining (197) and (198), we have

max
x∈X p

∥∇q2(x)∥22 ≤ C
2
3,τC

2
4,τ ∥ω∥

2
2 .

Therefore, we choose the pseudo derivative (see Definition. F.3) as follows

∇̃q2(x) = C3,τC4,τ ∥ω∥2 . (199)
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Pseudo Hessian Fix any ρ ∈ R. We bound ∥∇(ρ⊤∇̃q2(x))∥22 (see Definition. F.3) as follows

∥∇(ρ⊤∇̃q2(x))∥22 =
∑
u∈[p]

(dρ⊤∇̃q2(x)
dxu

)2 (199)
= 0.

Therefore, we choose the pseudo Hessian (see Definition. F.3) as follows

∇̃2q2(x) = 0. (200)

The concentration result in (187) for q1 follows by applying Proposition. F.2 with the pseudo discrete
derivative defined in (199) and the pseudo discrete Hessian defined in (200).

It remains to show that the one-norm and the infinity-norm of H(x) are bounded as in (198).

Bounds on the one-norm and the infinity-norm of H We have

Htu(x) =

{[
1− [θu + 2Θ⊤

u x]xu
]
exp

(
− [θu + 2Θ⊤

u,−ux−u]xu −Θuuxu
)

if t = u,

−2Θtux
2
u exp

(
− [θu + 2Θ⊤

u,−ux−u]xu −Θuuxu
)

otherwise.
(201)

Therefore,

|||H(x)|||1 = max
u∈[p]

∑
t∈[p]

|Htu(x)|

(201)
= max

u∈[p]

∣∣1−[θu+2Θ⊤
u x]xu

∣∣ exp (− [θu + 2Θ⊤
u,−ux−u]xu −Θuuxu

)
+ 2max

u∈[p]
x2u exp

(
− [θu + 2Θ⊤

u,−ux−u]xu −Θuuxu
)∑
t̸=u

|Θtu|

(a)

≤ (1 + αxmax + 4x2maxζ) exp (xmax(α+ 2ζxmax))
(b)
= C3,τC4,τ ,

where (a) follows from Definition. G.1 along with triangle inequality and Cauchy–Schwarz inequality
and (b) follows from (185) and (186). Similarly, we have

|||H(x)|||∞ = max
t∈[p]

∑
u∈[p]

|Htu(x)|

(201)
= max

t∈[p]

∣∣1−[θt+2Θ⊤
t x]xt

∣∣ exp (− [θt + 2Θ⊤
t,−tx−t]xt −Θttxt

)
+ 2max

t∈[p]

∑
u̸=t

|Θtu|x2u exp
(
− [θu + 2Θ⊤

u,−ux−u]xu −Θuuxu
)

(a)

≤ (1 + αxmax + 4x2maxζ) exp (xmax(α+ 2ζxmax))
(b)
= C3,τC4,τ ,

where (a) follows from Definition. G.1 along with triangle inequality and Cauchy–Schwarz inequality
and (b) follows from (185) and (186).
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